
Lat. Am. J. Phys. Educ. Vol.8, No. 4, Dec. 2014 4316-1 http://www.lajpe.org 

 

Finding the minimum input impedance of a second-
order twofold-gain Sallen-Key low-pass filter 
without calculus 
 

 
Kenneth V. Cartwright

1
, Edit J. Kaminsky2 

1
School of Mathematics, Physics and Technology, College of The Bahamas, 

P.O. Box N4912, Nassau, Bahamas. 
2
Department of Electrical Engineering, EN 846 Lakefront Campus, 

University of New Orleans, New Orleans, LA 70148, USA.  

 
 

E-mail: kvcartwright@yahoo.com 

 

(Received 28 June 2014, accepted 30 November 2014) 

 

 

Abstract 
We derive an expression for the input complex impedance of a Sallen-Key second-order low-pass filter of twofold gain 

as a function of the natural frequency ωo and the quality factor .Q  From this expression, it is shown that the filter 

behaves like a Frequency Dependent Negative Resistance (FDNR) element for low frequencies and as a single resistor 

at high frequencies. Furthermore, the minimum input impedance magnitude is found without using calculus. We 

discovered that the minimum input impedance magnitude is inversely proportional to Q  and can be substantially less 

than its high-frequency value. Approximations to the minimum input impedance and the frequency at which it occurs 

are also provided. Additionally, PSpice simulations are presented which verify the theoretical derivations.  

 
Keywords: Sallen-Key low-pass filter, Minimum without calculus, Input impedance.  

 

Resumen 
Derivamos una expresión para la impedancia de entrada compleja de un filtro Sallen-Key de paso bajo de segundo 

orden y ganancia 2 en función de la frecuencia natural ωo y el factor de calidad Q . Comenzando con esta expresión, 

mostramos que el filtro se comporta como una resistencia negativa dependiente de la frecuencia (FDNR) para 

frecuencias bajas y como un sólo resistor para altas frecuencias. Es más, encontramos la magnitud de la impedancia 

mínima sin usar cálculo. Descubrimos que la magnitud de la impedancia mínima es inversamente proporcional a Q  y 

que puede ser significativamente menor que a frecuencias altas. Proveemos aproximaciones para la impedancia de 

entrada mínima y para la frecuencia a la que ocurre. Presentamos también simulaciones en PSpice que verifican las 

derivaciones teoréticas. 
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I. INTRODUCTION  
 

Figure 1 shows the circuit diagram of an active second-

order Sallen-Key low-pass filter, which is widely used in 

electronics. One important parameter of such a filter is its 

transfer function, which has been widely studied and which 

relates its output voltage to its input voltage. Another 

important parameter is its input impedance. Unfortunately, 

as pointed out in [1], very little has been written about this 

input impedance, even though designers need to know its 

minimum value to ensure that the filter does not load down 

the source or a previous stage. Inspection of Figure 1 would 

suggest to the naive designer that the minimum input 

impedance is 
1
,R  as it is in series with the rest of the 

circuit. 

Unfortunately, as recently shown by Cartwright and 

Kaminsky [1] for the unity-gain filter, this is not the case: 

the input impedance can be very much lower than 
1
,R  

depending upon the value of ,Q  the quality factor of the 

filter. However, it is not known how the input impedance 

for the second-order Sallen-Key low-pass filter behaves for 

other gains. The purpose of this paper is to study this input 

impedance when the gain of the filter is two, and the 

capacitors have equal value. According to [2], such second-

order filters can be made to have any
 

Q
 
value: in fact, as 

we show below, 1/ ,Q r  where 2 1/ .r R R On the other 

hand, unity-gain filters must satisfy 1

2

.
1

Cr
Q

r C



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In this paper, we find the minimum value of the input 

impedance for the case where 1 2C C  and 3 4R R  without 

using calculus, which should be of benefit to the student 

who has not yet had the opportunity to study math at this 

level. 

Not only do we report our theoretical findings, but we 

also verify these with PSpice simulations. (PSpice is a 

popular electrical and electronic circuits simulation 

software package that is widely used by electrical engineers 

and some physicists. The latest demo version can be freely 

obtained from reference [3]). 

 

 
FIGURE 1. Circuit diagram of second-order twofold-gain Sallen-

Key low-pass filter. Note that in this paper 1 2C C C   and 

3 4 .R R R   

 

 

II. TRANSFER FUNCTION FOR THE SALLEN-

KEY LPF OF FIGURE 1 
 

In this section, the transfer function for the circuit of Figure 

1 will be given, so that the key parameters such as natural 

frequency o  
and quality factor Q  can be defined. Indeed, 

it is straightforward to show, as demonstrated in the 

Appendix, that if 1 2C C C   and 3 4R R , the transfer 

function is given by: 

  

2 2
1 2 2 1

2out

in s C R R sCR

V ( s )
T( s ) ,

V ( s )  
     (1) 

 

where ,s i with 1i    and   (rad/sec) is the angular 

frequency of the applied sine-wave. Clearly, the gain is 2 

for 0s .  

The denominator of Equation 1 can be written as: 

 

2 2 2
1 2 1 2

1 2

2

1

1
1,

o o

R C
s R R C s R R C

R R C

s s

Q 

 
  
  

 
   
 

            (2) 

where the natural frequency is 1 21/o R R C 
 
and ,Q  the 

quality factor of the filter, is 1

2

.
R

R
 

 

 

III. INPUT IMPEDANCE FOR THE SALLEN-

KEY LPF OF FIGURE 1 
 

As we show in the Appendix, the normalized complex input 

impedance 1( ) /Z s R  for the circuit of Figure 1 is given by: 

 
2 2

1 2 2

2 2
1 1 2

2

2

1( )

1
1

       = .
o o

o

s C R R sCR

s C

Z s

R R R

s s

Q

s

 



 


 
  

 

 
 
 

               (3) 

 

Interestingly, Equation 3 becomes unity for large 

frequencies   , 
 

i.e., the input impedance looks 

simply as 1,R and the phase is 0 .o
 On the other hand, for 

low frequencies (as 
 

approaches zero), Equation 3 

becomes, approximately, 2 2/ ,o s

 

i.e., the input impedance 

looks like a Frequency Dependent Negative Resistance 

(FDNR) element [4] whose impedance is  
1

2( ) ,Z j D


  

with 2
11/ .oD R  Hence, for low frequencies, the 

magnitude of the input impedance is 

2
1

2 2

1
,oR

D



 
  and 

the phase approaches 180o . 

 

A. Magnitude of the input impedance 

 

From Equation 3, the magnitude of the normalized 

impedance becomes: 

 
2

2
1

/ 1( )
,

p ip QZ s

R p

  



                         (4) 

where / op  
 
is the normalized frequency. 

 Actually, it will be more convenient to work with the 

magnitude squared for the normalized impedance. Hence, 

Equation 4 becomes: 

 

 

 

2
2 2 22

4
1

4 2 2

4

1 /( )

2 1/ 1
.

p p QZ s

R p

p Q p

p

  


  
 

              (5) 



Finding the minimum input impedance of a second-order unity-gain Sallen-Key low-pass filter without calculus 

Lat. Am. J. Phys. Educ. Vol. 8, No. 4, Dec. 2014 4316-3 http://www.lajpe.org 

 

Furthermore, Equation 5 can be rewritten as: 

 
2 2

2
1

( ) 1
,

Z s x Ax

R x

 
                 (6) 

 

where 2x p
 
and 22 1/A Q  . 

 Taking the square root of Equation 6 allows us to make 

a plot of the normalized impedance in dB (i.e., 

 120log ( ) /Z s R as a function of the normalized 

frequency, as shown in Figure 2, for various Q  values. 

Also shown is a straight-line plot of the magnitude of the 

normalized resistance of the equivalent FDNR element, 

confirming our earlier statement that the magnitude of the 

input impedance for low frequencies is simply that of a 

FDNR element. 

Clearly, Figure 2 also verifies the high-frequency value 

of the input impedance noted earlier. 

 

 
FIGURE 2. Magnitude of the normalized input impedance (in dB) 

as a function of the normalized frequency. The straight-line is the 

plot of the magnitude of the normalized resistance (in dB) of the 

equivalent FDNR element, i.e.,  2 220log / .o   

 

 

B. Phase of the Input Impedance 

 

The phase of the input impedance is easily found from 

Equation (3) to be  

 

 
1

2
tan 180 .

1

op

Q p
 

 
  
 
 

                  (7) 

 

For 1,p   the phase becomes 90o  
 

and for 1,p 
 

Equation (7) can be written as 

         

 
1

2
tan .

1

p

Q p
 

 
  
 
 

             (8) 

 

Note from Equation (7) that for 0,  180 ,  
 
and 

from Equation (8) that as ,  0.    These facts are 

also confirmed by a plot of Equation (7) and Equation (8) 

shown in Figure 3.  

Clearly, Figure 3 verifies the low-frequency and high-

frequency values of the phase of the complex input 

impedance noted earlier. 

 
FIGURE 3. Phase of input impedance (deg) as a function of the 

normalized frequency.  

 

 

IV. FINDING THE MINIMUM INPUT IMPE-

DANCE MAGNITUDE WITHOUT CALCULUS 
 

Now that the normalized input impedance has been found, 

it can be shown how its minimum value can be obtained 

without calculus.  

Using long division, Equation 6 can be written as: 

 

 

2 2 2

2
1

( ) 1 1
1 1 .

2 4

Z s A A A

R x xx

 
       

 
      (9) 

 

Clearly, for Equation 9 to be a minimum, 2/x A or 

 

    

2

min 2 2

1 1/ 2

2 2

2 2

2 1/ 2 1

1 1
       1 1 .

2 2

o o

o o

Q

Q Q

Q Q

  

 

 

 
 

   
         

   

       (10) 

 

Using  1 1
r

z rz  
 
for small 21/ 2z Q   [6], Equation 

(10) becomes: 
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 min 2

1
1 .

4
o

Q
 

 
   

 
     (11) 

 

To illustrate how the normalized minimum frequency 

depends upon the quality factor of the filter, Equation (10) 

is plotted in Figure 4. 

In order for Equation 10 to be valid, 22 1 0.Q    

Hence, 
1

2
Q   in order for there to be a minimum in the 

input impedance magnitude. For 
1

,
2

Q   the input 

impedance decreases monotonically from infinity to 1R  as 

the frequency increases from zero to infinity. This is 

illustrated in Figure 5. 

 

FIGURE 4. Normalized minimum frequency as a function of the 

quality factor of the filter. 

 

 
FIGURE 5. Normalized impedance as a function of the 

normalized frequency, for Q
 

values on either side of 

min 1/ 2 0.7071.Q  
 
In order for a minimum impedance to 

exist, Q > Qmin.  

Notice from Figure 5 that if there is a minimum, then there 

is also a frequency at which the normalized impedance is 

unity. From Equation 6, this frequency is determined to be: 

 

12

2 2

1 1
1 .

2 1 2 2

unity

o

Q

Q Q






 

      
           (12) 

 

Hence, for large ,Q  Equation 12 becomes: 

 

 
2

1 1
1 .

2 4

unity

o Q





 
   

 
                     (13) 

 

A plot of the percentage error, 100 (1-aproximate value/true 

value), of Equation 13 is shown in Figure 6, where it is 

clearly seen that the percentage error is quite good even for 

small values of ,Q
 
in spite of the fact that Equation 13 was 

derived for large .Q  

Note also that unity behaves as a lower bound on min
  

In fact, comparing Equation 13 with Equation 11 reveals 

that: 

 

min 2 .unity          (14) 

 

 
FIGURE 6. Percentage error of Equation (13) approximation to 

the minimum frequency. 

 

 

Also, from Equation 9, the minimum value of the input 

impedance is: 
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For large ,Q
 
Equation 15 becomes: 

 

1

min
( ) ,

R
Z s

Q
                           (16) 

 

or more accurately: 

 

1

min 2

1
( ) 1 .

8

R
Z s

Q Q

 
   

 
                   (17) 

 

Plotting the percentage error of Equation 17 in Figure 7 

shows that it provides a more accurate estimation for the 

minimum input impedance than Equation 16 does, as 

expected. 

 

 

V. PSPICE SIMULATIONS 
 

In order to verify the theoretical derivations, we performed 

PSpice simulations of the filter in Figure 1. For all the 

simulations, we set 1000o 
 
rad/s or 159.15of 

 
Hz, 

1,Q  1 2 3 4 1000 .R R R R    
 
Hence, 6

1 2 10C C     

.F  

 
FIGURE 7. Percentage error of Equation (16) and Equation (17) 

approximations to the minimum magnitude of the impedance. 

 

 

A. Verification of the design of the filter 

 

The first thing we want to do with our simulations is to 

verify that our design has met our specifications for o  and 

.Q To do this, we find the maximum gain of the filter, 

 
max

T  , by plotting the magnitude response of the 

simulated filter, as shown in Figure 8. From this graph, it is 

clear that the maximum gain is 7.2711 dB or 2.3097. 

However, from Equation 12 of [5], 

  2

max
2 / 1 1/(4 ) 2.3097;T Q Q     hence, the 

simulated 
2 4 21.1548 1.1548 1.1548

1.0000.
2

Q
 

   

 

Also, from Figure 8, the frequency at which the 

maximum gain occurs is found to be max 2 112.695 

708.08 rad/s. Hence, the simulated natural frequency is 

 
1

2
max max/ 1 2 2 1001.4o Q  



    rad/s. (See 

Equation 11 of [5]). 

Clearly, the parameters of the simulation match the 

theoretical design quite well. 

 

B. Verification of the Magnitude of the Input Impedance 

 

PSpice measures the magnitude of the input impedance by 

dividing 
inV  by  1 ,I R the current through 1.R  

Furthermore, the PSpice command 1( / ( ))indB V I R

measures  20log ,Z i.e. the magnitude of the input 

impedance in dB, a plot of which is shown in Figure 9. Also 

shown in this figure is the straight-line plot of the 

magnitude of the resistance of the equivalent FDNR 

element for low-frequencies, which is: 

 

2

1
20log

D

 
 

 

9

2 2

10
20log .

4 f

 
  
 

 

 

Clearly, the simulated plot coincides with the magnitude 

of the Frequency Dependent Negative Resistance (FDNR) 

straight-line plot at low frequencies, as expected. 

Furthermore, the simulated plot shows that the 

magnitude of the input impedance approaches 60 dB or 

1000 , as expected for high-frequencies. 

Additionally, from Equation 12, the theoretical value of 

1000unity o  
 

rad/s or 159.15 Hz. From Figure 9, 

PSpice simulates this as 158.74 Hz or 997.39 rad/s. 

Also, from Figure 9, min 224.497f   Hz or

min 1410.56  rad/s. The theoretical value for this is given 

by Equation 10, i.e., 2 *1000 1414.21 rad/s or given 

approximately by Equation 11, i.e., 5/ 4*1000 1250 rad/s. 

Furthermore, from Figure 9, the minimum magnitude of 

the input impedance is 58.7490 dB or 865.865 .  On the 

other hand, Equation 15 gives the theoretical value for this 

as 1000 3 / 2 866.025 .   Alternatively, Equation 17 

gives the approximate value of 875 .  

 

C. Verification of the Phase of the Input Impedance 
 

The PSpice command 1( / ( ))inP V I R
 
measures the phase of 

the input impedance in degrees, a plot of which is shown in 
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Figure 10. As can be seen, the phase becomes 180o at 

low-frequencies and 0o
at high frequencies, as expected. 

Furthermore, recall (from Equation 7 with p =1)  that 

the theoretical phase at the natural frequency

(1000/(2 ) 159.155  Hz) is 90 ,o  which is verified by 

the PSpice simulation. 

 

D. Summary of theoretical-PSpice comparison 

 

For convenience, the theoretical and PSpice results given 

above are summarized in Table I. As can be seen, there is 

excellent agreement between the two. 

 

 

 

 

 
TABLE I. Summary of Theoretical-PSpice comparison. 

 

Item Theoretical 

Value 

PSpice Value Percentage 

Difference 

o  1000 rad/s 1001.4 rad/s 0.14 

Q 1 1.000 0.00 

unity  1000 rad/s 997.39 rad/s 0.26 

min  1414.21 rad/s 1410.56 rad/s 0.26 

Phase at o  -90o -90.000o 0.00 

 Min. Input 

Impedance 
866.025   865.865  0.02 

 

 
FIGURE 8. Simulated magnitude response (dB) of the filter. 

 

            
Frequency 

10Hz 30Hz 100Hz 300Hz 1.0KHz 
DB(V(Vout) /V(Vin)) 

-24 

-20 

-16 

-8 

8 

(159.37572,6.007526) 

(112.69460,7.271101) 
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FIGURE 9. Simulated magnitude (dB) of the input impedance of the filter. The straight-line is the magnitude of the resistance (dB) of the 

equivalent FDNR element at low-frequencies, i.e.,  
2920log 10 / 2 .f 

  
  

     

 
FIGURE 10. Simulated phase response (deg) of the input impedance of the filter. 

 

            
Frequency 

1.0Hz 3.0Hz 10Hz 30Hz 100Hz 300Hz 1.0KHz 3.0KHz 10KHz 
P(V(Vin)/I(R1)) 

-180d 

-160d 

-140d 

-40d 

-20d 

-0d 

(160.03882,-90.00018) 

            

10Hz 30Hz 100Hz 300Hz 1.0KHz 

70 

100 

110 

(224.49727,58.74896) 

(158.74207,60.01743) 
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VI. CONCLUSIONS 
 

We have derived an expression for the input complex 

impedance for the second-order twofold-gain Sallen-Key 

low-pass filter, which is given in Equation (3). From this 

expression, we have shown that the input complex 

impedance is 1R  for high-frequencies, whereas for low-

frequencies it behaves like a Frequency Dependent Negative 

Resistance (FDNR) element. Furthermore, we have found 

the minimum of the magnitude of the input impedance 

without calculus, as given in Equation 15 and its 

approximations in Equation 16 and Equation 17. We have 

also discovered an expression for min , as given in 

Equation 10 and its approximation in Equation 11. Finally, 

we provided PSpice simulations which verified the 

theoretical results. 

In future work, we intend to study the input impedance 

for arbitrary gain Sallen-Key low-pass and high-pass filters. 
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APPENDIX 
 

In this appendix, we derive Eqs. 1 and 3. 

Let Iin(s) be the current through the source 1V ,  I1(s) be 

the current through C1 from bottom to top, and I2(s) be the 

current through 2R  from left to right. Looking at the node 

marked with voltage 2V ( s )  we obtain: 
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and 
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Noticing that the voltage across C2 is ( ) / 2outV s
 
(because 

3 4 )R R  and using voltage division, we obtain: 
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Or 
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Using (A4) in (A1) and (A2) gives, respectively: 
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Using KCL and 1 2C C C  gives: 
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Writing the loop equation for the leftmost loop using KVL, 

we obtain: 
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Finally, using (A7) and (A5) in (A8) and 

2C C,  we get the 

expression relating the output voltage to the input voltage: 
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Equation A9 can clearly be written as the transfer function 

shown in Equation 1. 
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In order to find the input complex impedance, we simply 

divide the input voltage by the input current, using A9 and 

A7 to get: 
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Finally, dividing by R1 we obtain the normalized complex 

impedance of Equation (3). 

 


