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Abstract 
During a football game the ball is airborne a large percentage of the time. For this reason it is important to understand 
to principles that govern the motion of the ball in flight. This paper explores the various equations associated with the 
movement of the ball in flight. Numeric techniques are utilized to solve some of the equations and represent them 
graphically. The parameters in the model are manipulated to show how the graphs vary and agree with real life results. 
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Resumen 
En un partido de fútbol la pelota está en el aire durante un gran porcentaje del tiempo. Por esta razón, es importante 
entender los principios que gobiernan el movimiento de la bola en vuelo. Este artículo explora las diversas ecuaciones 
asociadas con el movimiento de la pelota en vuelo. Se utilizan técnicas numéricas para resolver algunas de las 
ecuaciones y representarlas gráficamente. Los parámetros en el modelo son manipulados para mostrar cómo los 
gráficos varían y están de acuerdo con los resultados de la vida real. 
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I. INTRODUCCIÓN 
 
Newton’s second law of motion F=ma where F is a force, 
m is a mass, and a is the acceleration is used to determine 
the flight of a ball. In the general case there are three forces 
acting on the ball, the force of gravity and two forces 
arising from the interaction with the air. For the latter of the 
two forces due to the air the drag acts in a direction 
opposite to the ball’s velocity. The other force is the 
Magnus force which acts in the presence of spin and 
deflects the ball perpendicular to the velocity and to the 
axis of spin. If the spin axis of the ball is parallel to the 
ground, the Magnus force can provide lift. However, if the 
spin axis of the ball is perpendicular to the ground, the ball 
is made to bend flight.  

We begin by considering the case where the effects of 
air are negligible. There is no horizontal force acting on the 
ball therefore, the equation for the horizontal velocity u is: 

 

0=
dt
dum . 

 
Since there is no horizontal force acting on the ball the 
horizontal component of velocity is constant, and u is equal 
to the initial horizontal velocity u0. The horizontal 
displacement, x is therefore: 
 

tux o= .                              (1) 
 

The equation for the vertical component of velocity v, is: 
 

mg
dt
dvm −= , 

 
where g is the acceleration due to gravity. This equation has 
the solution: 
 

gtvv o −= , 
 

where is the initial vertical velocity. The velocity v at time t 
is obtained from: 
 

dt
dyv =  . 

 
Therefore, the vertical displacement is obtained by 
integrating: 
 

gtv
dt
dy

o −= , 

to get: 
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21
2oy v t gt= − .                        (2) 

Using equation (1) to eliminate t in equation (2) gives the 
equation for the trajectory: 
 

2
2

1
2

o

o o

v gy x x
u u

= − .                         (3) 

 
This is the equation of a parabola. 

The range R, of the flight is obtained by putting 0y =  
in equation (3) since the ball starts off at y = 0 and returns 
to the ground. On doing this gives for the range, 

 

g
uv

R oo2= .                                 (4) 

 
The time of flight is given by the time t=T, at which the 
displacement y returns to zero. From equation (2) this is 
given by: 

g
v

T o2= . 

 
Suppose that the initial angle between the initial trajectory 
and the ground is θ0, then: 
 

0 0 0 0 0 0sin and cosv V u Vθ θ= =  ,       (5) 
 

where the initial velocity V0 is given by: 
 

222
ooo uvV += . 

 
In terms of V0 and θ0, the range given by equation (4) is: 
 

2
0 0 02 sin cosVR

g
θ θ= , 

which is: 

g
V

R 0
2
0 2sin θ

= . 

 
It is known that  sin2θ0. has a maximum value at θ0 = 45o, 
this angle gives the maximum range for a given V0, 
 

2
0

max
VR
g

=  

 
Our attention now shifts to the drag. The equation for such 
is given by: 
 

2
0

1
2dF C pAV=  .                            (6) 

 
Where the drag coefficient CD depends on the velocity, is ρ 
the density of air, V is the velocity of the ball and A is its 

cross–sectional area, in our case πa2, which is the maximum 
cross–section, where is the ball’s radius. 

Equation (6) as simple as it appears gives rise to 
associated equations of motion that are rather involved. 

This is due to the fact that the velocity depends on CD 
and also the drag force couples the equation for the 
horizontal and vertical components of the velocity. 
Newton’s equations now become: 

 

θcosdFdt
dum −= .                            (7) 

And: 

mgF
dt
dvm d −−= θsin .                       (8) 

 
where θ is the angle between the trajectory and the ground 
at time t ,given by: 
 

u
v=θtan .                                   (9) 

 
 
II. METHODOLOGY 
 
It is important to note that equation (7) to (9) do not have an 
algebraic solution, but can be solved numerically. For 
simplicity, CD is taken to be constant during the flight. For 
our case we use CD = 0.2 since it is highly dependent on the 
Reynolds number. Wind tunnel testing has determined 
various drag coefficients for different shapes.  For a sphere, 
it ranges from 0.07 to 0.5. A smooth sphere is around 0.5 
and a rough sphere is around. A football’s surface can be 
described somewhere in between these values. 
(www.grc.nasa.gov/www/k-12/airplane/shaped.html). 

Using  and  sin1 θVv =  θcos1 Vu =  equations (7) and 
(8) can now be written as: 
 

Vu
dt
du

1
1 α−= ,                           (10) 

gVv
dt
dv

−−= 1
1 α .                       (11) 

Where: 
2
1

2
1

2 uvV += .                           (12) 
And: 

m
ACD ρα

2
1= . 

 
Equation (10) to (12) will be solved with CD = 0.2. 

The density of air taken to be 1.2 kg m-3 at a 
temperature of 20°C the mass of the ball approximately 
0.3969 kgm-3 and its cross sectional area is 0.39m2, giving 
the value α = 0.015m-1. (The Science of Soccer, John 
Wesson). By solving for u and v we can integrate u and 

v
dt
dy =  to obtain x and y respectively. 
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By manipulating V0 and θ0 we obtain numerical 
simulations for the flight path of the ball. However, our 
values for v0 and θ0 must be carefully chosen. Most medium 
to long range aerial passes in football are kicked with 
velocities ranging from 15m/s to 30m/s. Usually a 25m to 
30m free kick is struck with a velocity of about 25m/s. This 
enables about 1 second to elapse between contact with the 
ball entering the goal. (www.soccerball 
world.com/Physics.htm). Since our analysis is primarily 
concerned with aerial passing during play at medium to 
long range distances 20m to 70m, velocities of 15m/s to 
30m/s is a good standard. One objective of the player is to 
flight the ball with just the right velocity to allow a 
teammate to collect and control. If too much velocity is 
applied this may be difficult. 

Other forces can play a pivotal role in the movement of 
the football in flight. Let us consider the effect of wind 
moving parallel to the field’s plane having speed w along a 
parabolic path. The equations of motion would take the 
form: 

( )du u w V ,
dt

α= − −                        (13) 

 
dv vV g,
dt

α= −                              (14) 

 
with V given by: 
 

( ) 222 vwuV +−= .                         (15) 
 

Notice that the wind only affects the equation that relates to 
the horizontal velocity component since it can act in such a 
way to either speed up the motion or slow it down. We will 
assume that +w corresponds to a trailing wind and –w 
corresponds to a headwind. 

Again we rely on numerical methods to solve these 
equations. It is interesting to note if we make the 
transformation andu w u v v′ ′− → → , equations (13) to 
(15) take the form of equation (10) to (12) which we are 
already familiar with. We can see that u and v are replaced 
by andu v′ ′. If the equations are solved for andu v′ ′ and 

andu v′ ′ are calculated from 
dx u
dt
′ ′=  and 

dy v
dt
′ ′= , then the 

required solution can be achieved using the inverse 
transformations: 

 
, ,
, .

u u w v v
x x wt y y

′ ′= + =
′ ′= + =

 

 
We now present numerical simulations for both the 
horizontal and vertical displacement of a football when the 
angle to the horizontal is fixed and the initial velocity of the 
ball is varied between 15m/s and 30m/s. This is done in the 
case of a trailing wind and a headwind. 

Furthermore, we fix the velocity and vary the initial 
angle of the ball between 10° and 45°. In each instance, we 
used wind speeds of 4m/s and 7m/s. Wikipedia has 

classified these wind speeds as ranging from light breeze to 
moderate breeze. An Olympic sprinter running with a 
trailing wind of 4m/s is said to be wind aided and the time 
clocked is not recorded as legal. (International Athletics 
Federation). This is to say that a football moving through 
the air with winds speeds in this range will strongly 
influence its behaviour. 

Consequently in addition to the wind having a velocity 
w moving parallel to the field’s plane, the wind can act 
along the sides of the ball. The velocity is still taken as w 
but the direction is denoted by z. The motion of the velocity 
is this direction is denoted by V. The equation for the 
change in velocity in this direction with respect to time is: 

 

( )Vwv
dt
dv

z
z −−= α ,                        (16) 

with: 
( )2222 wvvuV z −++= . 

 
Solving for α yields 0.015m-1 the above equation can be 
solved numerically. However, a simple procedure gives a 
formula for the sideways deflection of the ball’s trajectory 
which is accurate for most cases. The equation for the 
forward motion is: 
 

Vu
dt
du α−= .                           (17) 

 
Dividing equation (16) by equation (17) gives: 
 

u
wv

du
dv zz −

=  .                           (18) 

 
Integrating equation (18) gives the solution: 
 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=

0

1
u
uwvz ,                       (19) 

 
where u0 is the initial value of u and vz = 0 initially. 

The deflection z is obtained by solving: 
 

zvdt
dz = . 

 
Hence, by using equation (19) for: 
 

0

0

t u dtz w t
u

⎛ ⎞∫= −⎜ ⎟
⎝ ⎠

. 

 
The deflection d, over the full trajectory is therefore: 
 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=

ou
RTwd , 
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where T is the time of flight and R is the range. It is 
important to observe that T and R are slightly affected by 
the side wind. A good approximation for d is obtained using 
their values with no wind. 

So far, we haven’t considered what transpires when spin 
is applied. A force known as the Magnus effect describes 
such motion. When a football is spinning the deflection 
caused by the Magnus effect displaces the ball in a 
perpendicular direction to the spin axis. This is to say that, 
if the spin axis is horizontal, the Magnus effect provides 
back lift and it the spin axis is vertical, the Magnus effect 
causes the ball’s trajectory to bend sideways. 

With medium and long range kicking we are primarily 
concerned with getting the ball to lift up high enough to 
clear opposing players and travel the required distance. 
Back lift produces this type of motion. Conventionally this 
force FL is given by: 

 
2

2
1 VACF LL ρ=  .                            (20) 

 
by analogy with the drag force given in equation (6) This 
formula has its origin in aeronautics and the subscript L 
stands for the lift which would occur, for example, on a 
wing. For our purpose this expression is somewhat 
misleading because 

LC  depends on both the spin and the 
velocity. 

For a spinning ball 
LC  is proportional to Vaq /  provided 

that Vaq /  is not too large and it is, therefore, convenient to 
write: 

 

sL C
V
aqC = , 

 
where p is the angular frequency of the spin and is the 
radius of the ball, then: 
 

VqaACF sL ρ
2
1=  .                      (21) 

 
Substituting for the air density 321 −⋅= mkgρ , the radius 
a=0.11m and the cross-sectional area 20390 mA ⋅=  equation 
(21) becomes. 
 32 6 10L sF C qV−= ⋅ × .                     (22) 

 
This sideways force produces a curved trajectory and the 
force is balanced by the centrifugal force 

2 wheremV / R, R  is the radius of curvature of the 
trajectory. Using equation (22) with the mass of 0.3969 kg, 
the resulting radius of curvature is: 
 

qC
VR
s

153= .                           (23) 

 
If we measure the rotation by the number of revolutions per 
second, f, then since π2/qf =  equation (23) becomes: 
 

fC
VR
s

24=  .                              (24) 

 
It’s is more natural to think in terms of sideways 
displacement of the ball as illustrated in figure 1 below. If 
we approximate by taking the trajectory to have a constant 
curvature then using Pythagoras’s equation: 
 

( ) 222 RDRL =−+ , 
 
and taking RD <<  so that 2D  is negligible: 
 

R
LD
2

2

= . 

 
Using equation (24) this becomes: 
 

2
1metres in

48
sC L fD V m s
V

−=
.             (25) 

 

 
FIGURE 1. Matematical construction for the trajectory. 

 
 
The time of flight is L/V and so the number of revolutions 
of the ball during its flights is n=Lf/V. Substitution of this 
relation into equation (25) gives: 
 

48
nC

L
D

s= . 

 
We have no direct measurement of sC  for footballs but 
experiments with other spheres have given values in the 
range 0.25 to 1 depending on the nature of the surface. 

Taking 0.5sC =  we obtain the approximate relation: 
 

100
n

L
D =  (The Science of Soccer John Wesson). 

 
For example, a deviation of 1 m over a length of 30 m 
would required the ball to undergo about 3 revolutions. 
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III. RESULTS 
 
 
 

 
 

FIGURE 2. Ball trajectories for varying initial velocities (initial angle 10 degrees). 
 
 
 

 
 

FIGURE 3. Ball trajectories for varying initial velocities with trailing wind 4 m/s (initial angle 10 degrees). 
 

  

 
 

FIGURE 4. Ball trajectories for varying initial velocities with trailing wind 7 m/s (initial angle 10 degrees). 
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FIGURE 5. Ball trajectories for varying initial angles with trailing wind 7 m/s (initial velocity 30m/s). 

 
 

 
 

FIGURE 6. Ball trajectories for varying initial velocities with head wind 4 m/s (initial angle 10 degrees). 
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FIGURE 7. Ball trajectories for varying initial angles with head wind 4 m/s (initial velocity30m/s). 

 
 
 
 

 
 

FIGURE 8. Ball trajectories for varying initial velocities with head wind 7 m/s (initial angle 10 degrees). 
 
 
 
 

 
 

FIGURE 9. Ball trajectories for varying initial angles with head wind 7 m/s (initial velocity30m/s). 
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The following graphs show the vertical and horizontal 
displacements of the ball when back spin is applied. The 
amount of spin determines to amount of lift. First, we have 
the code. 
 

 
FIGURE 10. Initial velocity vs sideways displacement. 

 

 
FIGURE 11. Initial velocity vs number of revolutions during 
flight. 

 

 
FIGURE 12. Vertical displacement vs sidedways displacement. 

 

 
FIGURE 13. Vertical displacement vs number of revolutions 
during flight. 

 
 
 
IV. DISCUSSION AND CONCLUSIONS 
 
It is also important to note that the ratio of f/V appearing in 
equation (25) is related to the ratio of the rotational energy 
to the kinetic energy.  This ratio is 
 

2

2

2
1
2
1

Vm

wI

E
E

K

R =  

and since: 
2

3
2 amI =  

 
2

320 ⎟
⎠
⎞⎜

⎝
⎛⋅=
v
f

E
E

K

R ,     1−sminV . 

 
For the example, a ball travelling at ( )141330 −⋅ smmph  
with a spin of 3 revolutions per second has a rotational 
energy of %61⋅  of its kinetic energy. Our results clearly 
demonstrate the close link between our numerical 
simulation and reality. The trajectories with drag force 
acting against the motion of the ball will definitely affect its 
range as seen in figure 2 and 3. It clearly demonstrates that 
the maximum projectile range will not be achieved with a 
launch angle of 45°. The results show that a trailing wind 
will increase the range of the trajectory for the same 
velocity and launch angle with just drag whereas, a 
headwind will decrease the trajectory. This is quite 
consistent with the laws of Physics. 

The results obtained when spin is applied shows that the 
ball bends perpendicular to the spin axis. If the spin axis is 
perpendicular to the ground the ball deviates left or right 
depending on if the rotation is clockwise or anti-clockwise. 

If the spin axis is parallel to the ground, the spin has two 
forms. These are known as topspin where the ball is rotated 
towards the ground or lift where the rotation is towards the 
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air. The graphs show the more intense the upward rotation, 
the more lift is generated. This in turn has the effect of 
increasing the range of the trajectory. Soccer players utilize 
this technique in long range passing. These results can 
inform coaches and other personnel in the sport how to 
implement certain approaches in their training regime to 
develop greater accuracy and efficiency in medium and 
long range passing.  A possible follow up paper can explore 
the how the materials, design, size and shape used in 
various soccer balls can influence their behaviour in flight. 
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