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Abstract 
We propose a general model of coastal bathymetry for estimating the run-up on it during tsunami. The model for 

bathymetry is considered as h(x) = -α xn, where α is termed as the steepness parameter and n determines the shape of 

bathymetry. A linear differential equation has been derived from the shallow water equations of Euler in one-dimension. 

An analytical solution of the equation is obtained. We find that as n increases the run-up of tsunami in the coastal region 

also increases for fixed α. On the other hand, the run-up also increases as α increase for a particular n. It is established that 

the waves with lower frequency (higher time period) produce larger run-up. 

 

Keywords: Tsunami, run-up, coastal bathymetry. 

 

Resumen 
Proponemos un modelo general de batimetría costera para estimar el run-up sobre la misma durante un tsunami. El modelo 

de batimetría se considera como h(x) = -α xn, donde α se denomina parámetro de pendiente y n determina la forma de la 

batimetría. Se ha derivado una ecuación diferencial lineal a partir de las ecuaciones de aguas poco profundas de Euler en 

una dimensión. Se obtiene una solución analítica de la ecuación. Encontramos que a medida que n aumenta, la aceleración 

del tsunami en la región costera también aumenta para α fijo. Por otro lado, el run-up también aumenta a medida que 

aumenta α para un n particular. Se establece que las olas de menor frecuencia (mayor período de tiempo) producen mayor 

run-up. 
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I. INTRODUCTION 

 
Tsunamis cause devastation in the coastal area due to run-up 

and inundation and the various aspects of tsunami are 

interesting fields of research [1]. Tsunamis are usually caused 

by underwater earthquakes. In addition to this, volcanic 

eruptions, landslides, large meteorite impact also have the 

potential to generate a tsunami [2]. In the subduction zone 

where an oceanic plate of relatively higher density suddenly 

goes below the continental plate of lower density may cause 

the centre of tsunami and from this place a series of waves 

that rush outwards – the beginning of tsunami [3]. These 

waves travel very far and very fast. The velocity of tsunami 

is c=√(gH), where g is acceleration due to gravity and H is 

the depth of the sea [4]. For example, if the sea depth is about 

5 km then the tsunami wave velocity is about 800 km/hr.  

Since the wavelength of tsunami is much larger than the 

depth of ocean, it is characterized by as shallow water waves. 

A tsunami can have a period in the range of 10 minutes to 2 

hours and wavelengths greater than 500 km. Therefore, we 

can use shallow water equations (SWE) to predict surge 

levels along the coast line due to tsunami. The rate at which 

a wave loses its energy is inversely proportional to the 

wavelength [5]. This is due to the fact that the velocity is 

proportional to the wavelength of a wave in a dispersive 

medium. Thus, the wave of larger wavelength reaches the 

shore with larger velocity and shows a higher run-up and it 

causes more destruction in comparison to the wave of smaller 

wavelength.  

It is well-known that a tsunami gains height due to 

‘shoaling’ effect on the coastal basin. If the trough of a 

tsunami reaches the coast first then it causes a phenomenon 

called drawdown, where it appears that sea level has dropped 

considerably. Drawdown is followed immediately by the 

crest of the wave. When the crest of the wave hits, sea level 

rises that is called run-up. Run-up is usually expressed in 

meters above normal high tide. Run-ups from the same 

tsunami can vary because of the influence of coastal basin i.e. 

the bathymetry of the coastal basin. There are a lot of studies 

of run-up for linear bathymetry [6, 7, 8, 9, 10, 11, 12, 13, 14, 

15] only. However, the topography/bathymetry for each 

basin is different. The purpose of this paper is to investigate 

qualitatively how the run-ups of tsunami vary according to 

the variation of bathymetry. In section 2, we derive the 

differential equation required for this investigation from the 

conservation laws of mass and momentum of Euler [16]. For 

this purpose, we find that the shallow water equations (SWE) 

are useful. For simplicity, one-dimensional model is 

considered. In section 3, we present the models of various 

bathymetries and find the solutions of the differential 

equations. The numerical results obtained for the cases are 

plotted graphically. Finally, we make some concluding 

remarks in section 4. 
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II. DERIVATION OF DIFFERENTIAL 

EQUATION AND ITS SOLUTION 
 

The shallow water equations (SWE) are a system of 

hyperbolic partial differential equations governing the flow 

of fluid in the rivers, channels, oceans and coastal regions. 

We have investigated SWE from mass and momentum 

conservation principles expressed in Navier-Stokes 

equations. SWE give the idea about the flow of water waves 

whose wavelength is much larger than depth of water. One 

can get SWE by neglecting bottom friction and assuming 

long wave approximations from the Euler equations of mass 

and momentum [16].  The SWE in one-dimension are given 

by 

                            
 𝜕𝜂

𝜕𝑡
+

𝜕𝑀

𝜕𝑥
= 0,                                   (1) 

and     

                           
𝜕𝑀

𝜕𝑡
+ 𝑔𝐷

𝜕𝜂

𝜕𝑥
= 0.                               (2) 

 

where  is water surface elevation, M is discharge flux in the 

negative x-axis (water is flowing along negative x-axis), g is 

the acceleration due to gravity, D is total thickness of water, 

H is the basin depth of water (D= +H) .  

As the wave reaches the coastal region, the depth of basin 

begins to decrease. Then, D= +h, where h=h(x). In this 

region, we can get a single uncoupled equation from (1) and 

(2). By partial differentiation with respect to t of (1) and that 

with respect to x of (2) and taking difference and neglecting 

the nonlinear terms, we get 

 
𝜕2𝜂

𝜕𝑡2 − 𝑔
𝜕

𝜕𝑥
(ℎ

𝜕𝜂

𝜕𝑥
) = 0.                          (3) 

 

With the help of (3), we shall try to analyze the run-up of 

tsunami in the coastal region for various forms of coastal 

basin. We consider that the basin lies in the fourth quadrant 

of the co-ordinate system such that the depth is in the negative 

y-axis and water surface is in the positive x-axis. 

 The origin is taken as the point where still water touches 

the coast. We shall first consider h(x) = -αxn, where n is a 

parameter which determines the shape of a bathymetry and α 

is also a parameter which determines the steepness of the 

bathymetry for a particular n. It is to be mentioned that the 

incident wave suffers negative geometry of the bathymetry. 

In particular, the depth of the ocean increases from the shore 

(x=0) to the higher x values but as the wave moves towards 

the shore the depth of the basin decreases. Thus we should 

put h(x) = αxn in (3) to derive the required differential 

equation. The wave height η is a function of both x and t. For 

separation of variables, we consider 

 

                              𝜂(𝑥, 𝑡) = 𝑢(𝑥)𝑣(𝑡),                        (4) 

                                                  

and 

                             𝑣(𝑡) = 𝑎 sin 𝜔𝑡,                            (5) 

                             
                          

where a is the amplitude and ω is the angular frequency of 

the wave. Putting (4) and (5) and h(x) = αxn in (3), we have 

the linear second order differential equation as 

               𝑥𝑢′′(𝑥)
+ 𝑛𝑢′(𝑥) +

𝜔2

𝑔𝛼𝑥𝑛−1 𝑢(𝑥) = 0.               (6) 

The general solution of (6) is given by  

𝑢(𝑥) = 𝑚𝑝(√𝑥)
1−𝑛

{
𝐽𝑝 (

2(√𝑥)
2−𝑛

𝑚
) 𝐶1Г (

1

2−𝑛
) +

𝐽−𝑝 (
2(√𝑥)

2−𝑛

𝑚
) 𝐶2Г (

2𝑛−3

2−𝑛
)

},     (7) 

where  


 ng
m




2  , 
2

1






n

n
p , C1 and C2 arbitrary 

constants, J  represents the Bessel function of the first kind 

and Γ denotes the gamma function. For n<1, p is negative and 

for n>1, p is positive. First, we shall discuss about the wave 

form of u(x) with the variation of n for particular values of ω 

and α. Secondly, we shall discuss the forms of u(x) for 

different values of α and ω for some particular value of n. 

 

 

III. MODELS OF BATHYMETRY AND RUN-UP 

 
A. Variation of n with constant α 

The forms of bathymetries, h(x) = -αxn , for particular values 

of α, α=0.2 (say), for three different values of n are shown in 

Figure 1. In this figure we see the forms of basin bathymetries 

for n=0.4, 1 and 1.8. The curves for n<1 are concave in nature 

and those for n>1 are convex. It is evident that the bathymetry 

is a straight line for n=1.  

 

FIGURE 1. Forms of basin bathymetry for different values of n. 

The dotted curve is for n=0.4 (concave), solid line is for n=1 (linear) 

and the dashed curve is for n=1.8 (convex). 

 
To get the numerical results we further consider that the 

values of the constants C1 and C2 are 1 in (7). We find the 

solutions, u(x) for n=0.4, 0.6, 0.8, 1, 1.2 and 1.4 as given 

below. 

𝑢(𝑥)0.4 = 0.83804𝑥0.3 (
𝜔

√(𝑔𝛼)
)

3
8

× 

[1.43452𝐽
−

3

8

(1.25𝑥0.8 𝜔

√(𝑔𝛼)
) +

0.888914𝐽3

8

(1.25𝑥0.8 𝜔

√(𝑔𝛼)
)],   (8) 
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𝑢(𝑥)0.6 = 0.90834𝑥0.2 (
𝜔

√(𝑔𝛼)
)

2
7

× 

[1.27599𝐽
−

2

7

(1.42857𝑥0.7 𝜔

√(𝑔𝛼)
) +

0.89975𝐽2

7

(1.42857𝑥0.7 𝜔

√(𝑔𝛼)
)],    (9) 

 

 

𝑢(𝑥)0.8 = 0.97007𝑥0.1 (
𝜔

√(𝑔𝛼)
)

1
6

× 

 

[1.12879𝐽
−

1

6
(

1

6
𝑥0.6 𝜔

√(𝑔𝛼)
) + 0.927719𝐽1

6
(

1

6
𝑥0.6 𝜔

√(𝑔𝛼)
)] ,  

                                                                                          (10) 

 

𝑢(𝑥)1 = 2𝐽0 (2√(
𝑥𝜔

𝑔𝛼
)),                      (11) 

𝑢(𝑥)1.2 = 0.94574𝑥−0.1 (
𝜔

√(𝑔𝛼)
)

−
1
4

× 

[1.22542𝐽
−

1

4
(2.5𝑥0.4 𝜔

√(𝑔𝛼)
) +

0.906402𝐽1

4
(2.5𝑥0.4 𝜔

√(𝑔𝛼)
)],                                

                                                                           (12) 

 

and              

𝑢(𝑥)1.4 = 0.711379𝑥−0.2 (
𝜔

√(𝑔𝛼)
)

−
1
3

× 

[2.67894𝐽
−

2

3

(
10

3
𝑥0.3 𝜔

√(𝑔𝛼)
) + 0.902745𝐽2

3

(
10

3
𝑥0.3 𝜔

√(𝑔𝛼)
)].   

                                                                            (13) 

  

We plot the u(x)’s against x as obtained in equations (8 – 10) 

in Figure 2 to get an idea about the behavior of tsunami near 

the shore when the concavity of the bathymetry gradually 

decreases. The solid, dotted and dashed curves represent the 

n values for 0.4, 0.6 and 0.8 respectively. The numbers for 

these curves have been obtained by putting g=10, α=0.2 and 

ω=π/10.  

From Figure 2, it is clear that as n increases the amplitude 

(run-up) of tsunami near the coastal line increases. All the 

curves have the numerical value u=1 at x=0 for our 

assumption that the constants (C1 and C2) have values equal 

to 1. But at x≈2.5, the values of u are 1.2, 1.3 and 1.5 for 

n=0.4, 0.6 and 0.8 respectively. We have checked that the 

results are consistent for any intermediate value of n. In view 

of this, we can say that as the concavity decreases i.e. the 

bathymetry changes its shape from concave to straight line 

the run-up of tsunami increases. If we look closely into the 

curves we see that the more concave the bathymetry (lower 

value of n) represents the smaller value of wavelength of 

tsunami. 

 

FIGURE 2. Plot of u(x) vs. x for different values of n. The solid 

curve is for n=0.4, dotted curve for n=0.6 and dashed curve for 

n=0.8. 

 
Here the wavelength is minimum for n=0.4 and maximum for 

n=0.8. It is known to us that the wave of higher wavelength 

carries more velocity (energy) and thus attacks at the shore 

with higher energy.  

Now, we will see the effect of tsunami when the 

bathymetry changes the shape from linear to convex i.e. for n 

≥ 1. Thus we plot (11 – 13) in Figure 3. The solid curve 

represents the incoming wave for n=1 (linear bathymetry), 

the dotted curve for n=1.2 and the dashed curve for n=1.4. If 

we look closely into the curves, we see that the wavelength is 

the largest for n=1.4 and the smallest for n=1. In particular, 

the wave for higher n value is more violent than the wave of 

lower n value. Thus we can say that the bathymetry for higher 

n value causes not only greater run-up but also more 

inundation in the coastal region. Thus our result is consistent 

when the bathymetry changes its shape from concave to 

convex. 

 

FIGURE 3: Plot of u(x) vs. x for different values of n. The solid 

curve is for n=1, dotted curve for n=1.2 and dashed curve for n=1.4. 

 
B. Variation of α for constant value of n 

Now, we shall discuss the effect of α for a particular value of 

n in the run-up of tsunami. For simplicity, we take n=1. Thus 

the depth of the basin follows the equation h=- αx. The basin 

bathymetry for different values of α will have the form as 

shown in Fig. 4. In this figure we have drawn h(x) for α=0.2 

and 0.4. As α increases the steepness of the basin increases.  
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FIGURE 4. Graphical representation of the linear bathymetry 

following the equation h(x)=-αx for two different values of α ( 

α=0.2 (solid line) and α=0.4 (dashed line)). 

 

From each of the wave equations given in (8 – 13), it is clear 

that the run-up of tsunami not only depends upon α but also 

on the angular frequency ω of the wave. The wave form for 

n=1 can be taken as 

 

𝑢(𝑥) = 𝐽0 (2√(
𝑥𝜔

𝑔𝛼
)) = 𝐽0 (√(

2

5
) √(

𝜔𝑥

𝛼
)) 

            

(14) 

 

where the multiplicative factor 2 in front of (11) is not 

considered and putting g=10. We choose two values of α and 

ω each for showing the dependence of u(x) on them. In 

particular, we plot u(x) for α=0.2 and 0.4 for two different 

values of ω, viz. ω=π/10 and π/20. The expressions are given 

by 

 

                   𝑢1(𝑥) = 𝐽0(0.444288√𝑥),                      (15) 

 

for  𝜔 = 𝜋 10⁄   and 𝛼 = 0.2,        

 

                   𝑢2(𝑥) = 𝐽0(0.314159√𝑥),                 (16) 

 

for  𝜔 = 𝜋 10⁄   and 𝛼 = 0.4,       

 

                  𝑢3(𝑥) = 𝐽0(0.222144√𝑥),                       (17) 

 

for 𝜔 = 𝜋 20⁄     and   𝛼 = 0.2 and 

 

                   𝑢4(𝑥) = 𝐽0(0.15708√𝑥),                        (18) 

 

for  𝜔 = 𝜋 20⁄   and 𝛼 = 0.4 .       

 

 

Figure 5 shows the variations of u(x)’s with x given in (15 – 

18). As the Bessel function of zero order is equal to 1 at x=0, 

thus all the equations bear equal value (1) at this point.  Here 

(a) (solid line) and (b) (dashed line) show the variations of 

u(x) for α=0.2 and 0.4 respectively when ω=π/10 whereas (c) 

(dot-dashed line) and (d) (dotted line) give the results for 

α=0.2 and 0.4 when ω=π/20. Comparing (a) and (b) or (c) 

and (d) we can say that for fixed value of ω, the oscillatory 

behavior of u(x) decreases for increasing value of α. In other 

words, the troughs/crests of the wave are observed at larger 

distances for higher α. More specifically, the wavelength 

increases with α for fixed ω. Thus more is the steepness of 

the bathymetry higher is the run-up which agrees with [15]. 

Similarly, by comparing the graphs of (a) and (c) or (b) and 

(d) we can draw the inference about the effect of ω for a 

particular value of α. In both of the cases we see that the 

wavelength increases with decreasing ω. 

 This is in agreement with [14] which describes that the 

waves which come later (lower frequency) are more violent 

than the waves with higher frequency. Actually, the distance 

between two consecutive peaks depends upon the argument 

of the Bessel function. If both α and ω change then we have 

to consider the value of ω/√α. The wavelength of u(x) 

increases with decreasing value of ω/√α. We know that the 

rate of loss of energy of a wave is inversely proportional to 

its wavelength. In the above four cases, the energy loss will 

be minimum for (d) and it increases gradually from (d) to (a). 

Thus the higher values of α and lower values of ω show larger 

run-up and hence affect the shore more violently during 

tsunami. This is true for any other value of n. 

 

 

 

FIGURE 5. Variation of u(x) with x; (a) and (b) for α=0.2 and 

α=0.4 when ω=π/10, (c) and (d) for α=0.2 and α=0.4 when ω=π/20. 

 

 

 

IV. CONCLUSION 

We derived a linear partial differential equation to explain the 

run-up of tsunami in different bathymetry of the coastal 

basin. The solution of the equation is obtained in analytic 

form. It is used to demonstrate how the run-up of tsunami 

changes as the basin topography changes from concave to 

convex including the linear form. Our study clearly shows 

that the run-up of tsunami increases gradually as the 

bathymetry goes from concave to convex. This is physically 

realizable because more is the convexity of the coastal basin 

larger will be the opposing factor to face the tsunami.  This, 

in turn, helps accumulate greater amount of water of the 

incoming wave. We have also explained how the run-up 

depends on the steepness of the basin. For a particular 

bathymetry of fixed n and for a fixed frequency of incoming 

wave, the run-up of tsunami also increases with steepness 

parameter α which, in other words, satisfies the observation 

in [15]. In this context we have got that less is the frequency 

of the tsunami larger run-up is observed which is in 

agreement with [14].  
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