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Abstract 
Despite the success of the Dirac equation, the incorporation of the special theory of relativity into quantum mechanics 
predicts some paradoxes, like that the spin prediction from Dirac equation can be only identified with non- relativistic 
approximations (Pauli and Foldy-Wouthysen), as well as the spin predication is a relativistic quantum phenomena 
because the spin prediction is a necessary requirement of the relativistic quantum mechanics only. In this paper we 
show that the derivation of the spin and its magnetic moment can be done with a pure classical treatment. Since we 
start from the classical physical laws and the classical relativity principle to get the linear Schrödinger equation as a 
result the derivation of the spin and its magnetic moment can be done with a pure classical treatment. This approach 
result a Schrödinger equation, in which we show that the spin of the electron is a non relativistic quantum phenomenon 
too. 
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Resumen 
A pesar del éxito de la ecuación de Dirac, la incorporación de la teoría especial de relatividad en la mecánica cuántica 
predice algunas paradojas, como la predicción del spin de la ecuación Dirac que puede ser identificada solamente con 
aproximaciones no-relativistas (Pauli y Foldy-Wouthysen), así como el pronóstico del spin que es un fenómeno 
cuántico relativista porque la predicción del spin solo es un requerimiento necesario de la mecánica cuántica 
relativista. En este artículo mostramos que la derivación del spin y su momento magnético puede ser realizada con un 
tratamiento puramente clásico. Ya que comenzamos de las leyes físicas clásicas y del principio de relatividad clásico 
para obtener la ecuación de Schrödinger lineal como un resultado, se puede realizar la derivación del spin y su 
momento magnético con un tratamiento puramente clásico. De esta aproximación resulta una ecuación de 
Schrödinger, en la cual mostramos que el spin del electrón ya no es un fenómeno relativista cuántico. 
 
Palabras clave: Ecuación de Dirac, spin del electrón, mecánica cuántica no relativista. 
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I. INTRODUCTION  
 
In 1926 while Schrödinger was publishing his non-
relativistic single particle wave equation [1], Dirac [2] was 
searching for a relativistic invariant form of the one-
particle Schrödinger equation for electrons starting from 
the relativistic equation, which was known as Klein–
Gordon equation (KGE). However, at that time several 
objections emerged against the KGE as a single particle 
equation because its solutions allowed negative probability 
densities, besides there was the possibility of negative 
energies and their solutions did not have clear spin 
dependence. In 1928 Dirac published an equation [2, 3] 
which was presented as a definite solution to the above 
mentioned problems where he has shown that the spin 
belongs to the relativistic wave equation. The integration 
of the special relativity theory with quantum mechanics 
has yielded many paradoxes that remained unsolved that it 

was impossible to directly write a non-relativistic equation 
for spin-1/2 particles and that it could therefore only be 
derived as a non-relativistic limit of the relativistic Dirac 
equation. So it was known in standard quantum mechanics 
that the spin of electron has only relativistic nature. 
However, in 1984, this supposition was questioned by W. 
Greiner [4] when he derivates the spin from the non-
relativistic quantum mechanics, i.e., he derivates the spin 
from the Schrödinger equation. 

In this paper we obtain additional advantage 
concerning the same result of Greiner, where we revealed 
that the spin of the electron and its magnetic moment can 
be derived from the modified Schrödinger equation 
without using any kind of approximations (non-relativistic 
limit of Dirac equation), and that the derivation of the spin 
and its magnetic moment can be done with a pure classical 
treatment. 
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II. THE RELATIVISTIC DIRAC EQUATION 
AND THE PAULI EQUATION AS A NON-
RELATIVISTIC LIMIT OF THE DIRAC 
EQUATION 
 
The early twentieth century saw two major revolutions in 
the way physicists understand the world. The first one was 
quantum mechanics itself and the other was the theory of 
relativity. Important results also emerged when these two 
theories, i.e., quantum mechanics and the theory of 
relativity were brought together and one of these results is 
the Dirac equation which leads to the spin of an electron 
that was known as a relativistic effect. 

When calculating kinetic energy relativistically using 
Lorentz transformation instead of Newtonian mechanics, 
Einstein discovered that the amount of energy is directly 
proportional to the mass of body: 

E mc= 2 ,                                     (1) 

where E is the total energy and m the relativistic mass. 
The energy and momentum of a particle momentum 

are then related by the principal equation governing the 
dynamics of a free particle: 

2 2 4
0E c m c= +2p ,                          (2) 

where c is the speed of light, mo is the rest mass of the 
particle and p is the momentum. 

Following Dirac, we take into account the time 
dependent of Schrödinger equation: 

ˆ ,i H
t
ψ ψ∂ =

∂
                               (3) 

using (2) and (3) Dirac assumed that  

2 2 4
0ˆ .i c m c

t
ψ ψ∂ = +

∂
2p  

One of the conditions imposed by Dirac in writing down a 
relativistic equation for the electron was that the ‘‘square’’ 
of that equation will give the Klein-Gordon equation. 
Imposing the additional condition of linearity of � in the 
components of p̂  led Dirac to following relation 

ˆ
Di H

t
ψ ψ∂ =

∂
,                            (4) 

where 
2

0
ˆ ˆ( )DH c m c β= +αp ,                      (5) 

 
0

, 1,2,3,
0

k
k

k

σ
α k

σ

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

   0
0
I

I
β

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 ,      (6) 

 
and I is the two-by-two identity matrix. 

In standard quantum mechanics, it is not possible to 
directly extend the Schrödinger equation to spinors, so the 
Pauli equation must be derived from the Dirac equation by 
taking its non-relativistic limit. This is in particular the 
case for the Pauli equation which predicts the existence of 

an intrinsic magnetic moment for the electron and gives its 
correct value only when it is obtained as the non-
relativistic limit of the Dirac equation. 

In the Dirac equation for the relativistic charged 
particle moving in a constant magnetic field 

2
0ˆ e

i c m c
t c
ψ β ψ

⎡ ⎤⎛ ⎞∂ ⎟⎜⎢ ⎥= − +⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠∂ ⎣ ⎦
α p A ,            (7) 

we can follow Pauli's approach by eliminating small 
components to derive the Pauli equation. We consider a 
two-component representation, where the four-component 
spinor � is decomposed into two spinors �b and �s ,each 
one with two components 

1 3

2 4

, , .b
b s

s

ψ ψ ψ
ψ ψ ψ

ψ ψ ψ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟= = =⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎟ ⎜ ⎜⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠

            (8) 

In the non-relativistic limit, the rest energy, moc
2 becomes 

dominant; therefore, the two component solution is 
approximately 

, ,

im c t

b s b seψ ψ
−

=
2

0
0 .                         (9) 

Substituting Eq. (9) into Eq. (7), and using Eq. (6), it gives 

0 0
b s

e
i c i

t c
ψ ψ

⎛ ⎞∂ ⎟⎜= ∇− ⎟⎜ ⎟⎜⎝ ⎠∂
α A ,             (10a) 

0 0 2 0
02s b s

e
i c i m c

t c
ψ ψ ψ

⎛ ⎞∂ ⎟⎜= ∇− −⎟⎜ ⎟⎜⎝ ⎠∂
α A ,   (10b) 

0 2 0
0s si m c

t
ψ ψ∂

∂
 ,                      (11) 

and with this last approximation, Eq. (10b) becomes to  

0 2 0
00 2b s

e
c i m c

c
ψ ψ

⎛ ⎞⎟⎜= ∇− −⎟⎜ ⎟⎜⎝ ⎠
α A , 

which gives 

0 0

02s b

e
i

c
m c

ψ ψ

⎛ ⎞⎟⎜ ∇− ⎟⎜ ⎟⎜⎝ ⎠=
α A

.                      (12) 

The lower component 
sψ 0  is generally referred to as the 

'small' component of the wavefunction �, relative to the 
'large' component 0

pψ .  

Substituting the expression 
sψ 0  given by Eq. (12), into 

Eq. (10a), we obtain 

0 0

02b b

e e
i i

c c
i

t m
ψ ψ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜∇− ∇−⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∂ ⎝ ⎠ ⎝ ⎠=
∂

α A α A
. 

Finally, by using the well-known identities 

( ( i ×σa) σb)= ab+ σ(a b) , 

we deduce that, being B=∇×A the magnetic field, 
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0 0

0 02 2b b

e
i

ec
i

t m m c
ψ ψ

A
⎛ ⎞⎟⎜ ∇− ⎟⎜ ⎟⎜∂ ⎝ ⎠= −

∂
[ ]

2

σB  .       (13) 

The Pauli equation for the theory of spin was derived as a 
non-relativistic limit of the relativistic equation and it was 
well known in standard quantum mechanics as a direct 
proof of the fundamentally relativistic nature of the spin. 
As we shall verify, the modified Schrödinger equation will 
lead directly to the Pauli equation and therefore to the spin 
of the electron without using the non- relativistic limit, 
with the same results as in Dirac's theory of the relativistic 
electron. 
 
 
III. DERIVATION OF LINEAR SCHRÖDIN-
GER EQUATION 
 
It is well known that the nature of spin defies non 
relativistic QM. Therefore a statement was known that the 
spin must have to do with special relativity although its 
connection is not entirely understood. In contrast to this 
statement, W. Greiner [4] has followed the Dirac’s 
approach where he started from the same premise: the 

Schrödinger operator 
2

0

ˆˆ ˆ
2

K E
m

= −
p  must be linear in 

momentum. Then Greiner writes the free Schrödinger 
equation 0ˆ =ΨK  as 

ˆ ˆˆ ˆ ˆ ˆ 0( )AE CΘΨ Ψ= + + =Bp  ,                (14) 

where the operator Θ̂  would be linear in momentum, thus 
there must be an operator such that 

ˆ ˆˆ ˆ ˆ ˆA E CΘ′ ′ ′ ′= + +B p ,                      (15) 

so the multiplication of Eqs. (14) and (15) result again the 
Schrödinger equation 

ˆ ˆ ˆm KΘ ΘΨ Ψ′ = 02 .                          (16) 

According to Eq. (16) Greiner determines the matrix A, B 
and C. He obtained the linear Schrödinger equation 

ˆ ˆˆ ˆ ˆ 0( )AE C Ψ+ + =Bp ,                        (17) 

where 

00 0 0 2
0 0 0

ˆ ˆ,
m I

I
A i C i

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜=− ⎟ = ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
 ,                  (18) 

and 

5
ˆ ˆ ˆ ˆ, , 1 to 4 ,B iM B Mα αγ α= − = =           (19) 

as well as  
10

.
0
I

M M
I

−⎛ ⎞⎟⎜= ⎟=⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

Greiner gets also that the �� have the usual representation 
 

4

0 0
( 1,2,3) , .

0 0
j

j
j

I
j

I

σ
γ γ

σ
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟= = = ⎟⎜ ⎜⎟ ⎟⎜ ⎜ ⎟⎜⎟⎜ −⎝ ⎠⎝ ⎠

(20) 

 
 
IV. DERIVATION OF MODIFIED 
SCHRÖDINGER EQUATION FROM THE 
CLASSICAL PHYSICAL LAWS AND ITS 
SOLUTIONS 
 
In several recent papers [5, 6] we suggested another way to 
account for the Lorentz transformation and its kinematical 
effects in relativistic electrodynamics as well as in 
relativistic mechanics. And by following the same 
approach we derived Einstein’s equation as well as the De 
Broglie relation from classical physical laws such as the 
Lorentz force law and Newton’s second law [7, 8, 9] 

2 ,tE mc=                                 (21a) 

.h
p

λ
=                                    (21b) 

We showed also that Eq. (21a) could be written as 

2
2 2

0 21 ,t

v
E mv m c

c
= + −                    (22) 

and from the last relation we have by definition the kinetic 
energy 

2
2 2 2

0 0 21 1 ,k t

v
E E m c mv m c

c

⎛ ⎞⎟⎜ ⎟⎜= − = + − − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

and for non-relativistic velocities, v<<c, Eq. (22) reduces 
to 

2 2 2
0 0 0

1 .
2t kE E m c m v m c= + = +            (23) 

In the paper [10], D. Ward, S. Volkmer started from the 
classical electromagnetic wave equation as well as the 
basics of Einstein’s special theory of relativity. And by 
extending this wave equation for photons, generalize to 
non-zero rest mass particles they get the free Schrödinger 
equation. So following a similar approach to that used in 
[10], i.e., by starting from the classical physical laws and 
the classical relativity principle we get also the linear 
Schrödinger equation, i.e., Eq. (17) without using 
Einstein’s special theory of relativity as in [10] did. 
Therefore, we can go beyond the mathematical similarities 
of the classical and quantum theories of the electron if we 
recognize that we get Eqs. (21) and (23) without using of 
Einstein’s special theory of relativity this being the new 
input. Since our work carries D. Ward's work a step further 
by deriving Eqs. (21) and (23) without using the special 
relativity theory and we obtain also the same result of 
Greiner, i.e., Eq. (17). As a result the derivation of the spin 
and its magnetic moment can be done with a pure classical 
treatment. 
     Our starting point is Eq. (17), but first we rewrite the 
matrices A, B and C as follows 
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0
,

0 0
iI

A M
⎛ ⎞− ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

                             (24a) 

0 0
,

0 2
C M

miI

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
                            (24b)  

0
.

0
j

j
j

B M
σ

σ
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

                             (24c) 

Setting Eqs. (24) in Eq. (17), and multiplying by M -1, we 
get 

0

0 0 00 ˆ ˆ .
0 0 20 0

j

j

iI
E

m iI

σ
σ

Ψ Ψ Ψ
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎟ ⎟⎟ ⎜ ⎜⎜ ⎟ ⎟⎟ = +⎜ ⎜⎜ ⎟ ⎟⎟ ⎜ ⎜⎜ ⎟ ⎟⎜ ⎜⎟⎜⎝ ⎠ ⎝ ⎠⎝ ⎠

p        (25) 

We shall continue to find the eigenfunctions of the new 
linear Schrödinger equation to prove that there is 
contradiction with Dirac's conceptions of relativistic spin 
of electron. That means we will show that the new linear 
Schrödinger equation is an equation for describing the spin 
of electron. Solutions to Eq. (25) are plane waves which 
can be written in the following form 

( , ) ( )
( , ) ,

( , ) ( )

iEtx t x
x t N N e

x t x

ϕ ϕ
χ χ

−⎛ ⎞ ⎛ ⎞
Ψ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
           (26) 

where N is the normalization constant, and ( )
( )
x

x

ϕ
χ
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 is a four 

component spinor. Substituting Eq. (26) in Eq. (25), and 
considering that 

0

0

( )
,

( )

ipxx
e

x

ϕϕ
χχ
⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎟= ⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 

where 

                                       1
0

2

,
ψ

ϕ
ψ
⎛ ⎞⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

and 

                                     3
0

4

,
ψ

χ
ψ
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

are two-component spinors, we find that 

0 0 0
0

0 0 0

00 0 0
2

00 0 0
j

j
j

iI
E p m i

I

σϕ ϕ ϕ
σχ χ χ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

= +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

  (27) 

it implies the two equations 

0 0 0 ,j jiE pϕ σ χ− =                           (28a) 

0 0 02 0 ,j jp m iσ ϕ χ+ =                         (28b) 

which have solution if 

0

0 ,
2

j j

j j

iE p

p m i

σ
σ

−
=                           (29) 

and by using the same known identities, that used above, 
then Eq. (29) goes into 

2

0

.
2

E
m

= p                                    (30) 

For a given E from Eqs. (28) follows that  

0 0
0

,
2

j jp

m i

σ
χ ϕ

−
=                             (31) 

and from Eqs.(28) and (31) we find 
2

0 0
0

( )
.

2
j jp

E
m

σ
ϕ ϕ

⋅
= .                        (32) 

Using Eq. (30) in Eq. (32), we find that �0 can take one of 
the representations 

0

1
,

0
ϕ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

or 

0

0
1

ϕ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

and from the above calculations we deduce that 

( )
0

0
0

( , )
ˆ( , ) . (33)

( , )
2

i
px Etx t

x t N N i
x t

m

e
ϕ

ϕ
ϕχ

−
⎛ ⎞

⎛ ⎞ ⎜ ⎟Ψ = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

pσ
 

By calculating the normalization constant N for positive 
energy solution, we obtain  

0

0

2
2

m
N

E m
=

+
. 

If we consider the free electron motion along the z-
direction, then the two states that represent free moving 
electron are 

( )0
1,

02

1
02 ,

2 1
02

i pz Et

p
z

m
e

E m i p

m

ψ
σ

−

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟= ⎜ ⎟+ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

        (34a) 

( )0
1,

02

0
12 .

2 0
12

i pz Et

p
z

m
e

E m i p

m

ψ
σ

−

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟= ⎜ ⎟+ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

            (34b) 

These are just the wave functions that can describe the spin 
up, and the spin down. For each value of p there is one 
positive eigenvalue, Eq. (30), and two eigenfunctions, Eqs. 
(34), in according with eigenvalue Eq. (25). 
 
 
V. INTERACTION WITH THE MAGNETIC 
FIELD- THE PAULI EQUATION 
 
The most important result of the relativistic Dirac equation 
was presenting a theoretical description of the electron 
spin and its magnetic moment, which means that the 
predictions of electron spin is the property of the Dirac 
equation only. That is not true for many reasons: 
     If one derives the spin of the electron and its magnetic 
moment from the non relativistic linear Schrödinger 
equation, Eq. (25). The predictions of electron spin did not 
occur directly from the Dirac equation, but using 
approximation like the non relativistic limit of Dirac 
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equation to get the Pauli equation with the proper value of 
the spin of the electron and its magnetic moment from the 
non relativistic Pauli equation  
    As we know, the momentum p is replaced in the same 
way to include the effects of electromagnetic fields, and if 
we only consider the effect of a magnetic field B then the 
momentum is replaced as ˆ ˆ e

c
→ − Ap p , and Eq. (25) 

becomes 

0

0 00 0ˆ ˆ ,
0 20 0 0

iI e
E

m iIc
Ψ Ψ Ψ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎟⎟ ⎟ ⎜⎜ ⎜ ⎟⎜ ⎟⎟ = ⎟ − +⎟ ⎜⎜ ⎜ ⎜ ⎟⎟ ⎟ ⎟⎜ ⎜⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
A

σ
p

σ
   (35) 

which implies 

0

ˆ ( , )ˆ 0( , ) , (36)
2 ( , )0 ˆ ( , )

e
x t

ciE x t

im I r te
x t

c

χ
ϕ

χ
ϕ

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ − ⎟⎟⎜ ⎜ ⎟⎟⎜⎛ ⎞ ⎜ ⎛ ⎞⎝ ⎠ ⎟⎜⎟⎜ ⎟⎟ ⎜⎟ ⎜ ⎟= +⎟⎜ ⎜⎟ ⎜ ⎟⎟⎜ ⎜ ⎟⎟ ⎜⎜ ⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎟⎜ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

A

A

σ p

σ p

 

and 

ˆ ˆ 0 ,e
iE

c
ϕ χ

⎛ ⎞⎟⎜− − =⎟⎜ ⎟⎜⎝ ⎠
Aσ p ,                  (37a) 

0ˆ 2 0 ,e
m i

c
ϕ χ

⎛ ⎞⎟⎜ − + =⎟⎜ ⎟⎜⎝ ⎠
Aσ p                 (37b) 

therefore 

0

ˆ
ˆ ( , ) ( , ) .

2

e

c
E x t x t

m
ϕ ϕ

⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜ −⎨ ⎬⎟⎜ ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭=
A

2

σ p
            (38) 

Using the well-known identities, we get  
2

ˆ ˆe e e

c c c

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎪ ⎪⎟ ⎟⎜ ⎜− = − −⎟ ⎟⎨ ⎬⎜ ⎜⎟ ⎟⎜ ⎜⎪ ⎪⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
A A

2

σ p p σB , 

we recover finally an equation for the two- component 
spinor-� 

2

0 0

ˆ( , ) ( , ) ,
2 2

( )e
x t eci x t
t m m c

ϕ ϕ
−∂ = −

∂
[ ]Ap

σB     (39) 

which is the Pauli equation with a spin g-factor of 2, the 
same result as in Dirac’s theory, is derived from the non 
relativistic linear Schrodinger equation, this means that the 
electron has a magnetic moment –e�/2mo� and the 
magnetic moment interacts with an external magnetic 
field, the corresponding contribution to the energy is -�B. 
An important characteristic of Eq. (39) is that we did not 
use any kind of approximation to reach it, i.e., we did not 
use the condition (11) to eliminate the lower component � 
of the wavefunction �, here the component � of � 
eliminates itself without any approximation. 
     In Schrödinger theory the orbital angular momentum L̂  
commutes with the Hamiltonian 2ˆ ˆ / 2H m= p , this is not 
the case in Dirac theory, since the Dirac Hamiltonian is 
linear in momentum and the total momentum ˆˆ ˆ= +J L S  
commutes with it. For this reason, it is conventional to 
choose an operator similar to J which commutes with the 

linear Schrödinger Hamiltonian �s. From Eqs. (24) and 
(25) we can define the linear Schrödinger Hamiltonian �s 

ˆ ˆ
sH D= +pα ,                           (40) 

where 

0 0 0
,

0 2 0
D

miI

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
σ

σ
α = . 

The orbital momentum L̂  doesn’t commutes with �s 

[ ] [ ]ˆ ˆ, , ( )sH L D L i= + =− ×p α pα  ,         (41) 

however, to find an operator which commutes with �s, we 
remind the operator B in Eq. (24c):  

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
0

0
σ

B
σ

 , 

and its commutator with �s is 

[ ] ˆ, 2 ( ) .sH i= ×B α p                          (42) 

Now if we define Dirac spin operator as 

ˆ ˆ=
2

S B ,                                  (43) 

it satisfies 

[ ] ˆ, ( )sH S i= ×α p ,                      (44) 

and from commutators (41) and (44) we see that: 

[ ] [ ] ˆ ˆ, , ( ) ( )s sH H i i+ = = × − × = 0L S J α p α p , 

which means that the operator 

ˆˆ ˆ= +J L S ,                                 (45) 

commutes with �s. It shows also that the total angular 
momentum, Eq. (45), is given similarly as in Dirac theory.  
 
 
VI. CONCLUSION 
 
Despite successes of the Dirac equation, there remain a 
number of misunderstandings about this equation. The first 
misunderstanding about Dirac equation is the spin of 
electron which is well known as a relativistic effect. 
Although of this the spin prediction from Dirac equation 
can not be allowed directly without approximations 
methods i.e.; the non-relativistic limit of the relativistic 
Dirac equation to get the Pauli equation which predicts the 
existence of an intrinsic magnetic moment for the electron 
and gives its correct value only when it is obtained as the 
non-relativistic limit of the Dirac equation. 
    The second misunderstanding about Dirac equation is 
zitterbewegung. In the Dirac relativistic equation for the 
spin 1/2 particle, there is a velocity operator ˆˆ

jcα=v . It is 

believed that this operator is inadequate in two aspects: 
The first one is that its eigenvalues are +c and -c with c 
being the light speed in a vacuum. The other is that it is not 
proportional to the linear momentum. In the papers [12, 
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13] it had been shown that the velocity of the particle 
obtained from the modified Dirac equation always moves 
with velocity ±v as observed in the laboratory, and this 
result eliminate the problem of the zitterbewegung. 
    In contrast to it stands the wrong statement, which 
attribute spin to relativistic characteristics and that non-
relativistic quantum mechanics is a theory of spinless 
particle. Recently, many Authors have argued that the 
Schrödinger equation of non-relativistic quantum 
mechanics describes not a spinless particle as universally 
assumed, but a particle in a spin eigenstate [11, 12, 13]. 
The spin of electron can be derived gradually from the non 
relativistic linear Schrodinger equation, and everything 
result automatically as it is shown in the present paper.  
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