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Abstract 
Huygens’ Principle (HP) contains both the principle of action-at-proximity and the superposition principle. Although 
the propagation of sharp, non-spreading wave fronts is included in Huygens’ (1690) original formulation, it can be 
left out without touching those principles. The formulation of HP by means of the Chapman-Kolmogorov equation 
(following Feynman 1948) comprises both versions and overcomes misunderstandings like ”Huygens’ principle is not 
exactly obeyed in Optics” (Feynman 1948) and ”HP is incompatible with Green’s functions” (Johns 1974). This way, 
HP applies not only to the propagation of light, but also to heat and matter diffusion, Schroedinger matter waves, ie, to 
virtually all propagation phenomena, which can be described through explicit linear differential and difference 
equations, respectively. HP for Maxwell’s equations is discussed in terms of the Helmholtz-decomposed fields and 
currents. The appearances of HP in mechanics and in fractional Fourier transformation being exploited in optics are 
also mentioned. 
 
Keyword: Optics, Huygens Principle, light propagation. 
 

Resumen 
El Principio de Huygens (PH) contiene tanto al principio de acción a proximidad como al principio de superposición, 
Aunque la propagación del pico no esparcido de los frentes de onda está incluído en el trabajo de Huygens (1690) 
acerca de la ecuación de Chapman-Kolmogorov (que sigue al trabajo de Feymann de 1948), incluye  a ambas versiones 
y sobrepasa a los malentendidos como los de que “El principio de Huygens no es exactamente obedecido en óptica” 
(Feymann 1948) y “PH es incompatible con las funciones de Green” (Johns 1974). De esta forma, el PH se aplica no 
solamente en la propagación de la luz, pero también en la difusión del calor y la materia, en las ondas de Schrodinger 
de materia, es decir, a virtualmente toda la fenomenología de la propagación, la cual puede ser descrita a través de 
ecuaciones diferenciales lineales explícitas, respectivamente. El PH para las ecuaciones de Maxwell es discutido en 
términos de la descomposición de los campos y corrientes. En este trabajo mencionamos como es que la aparición del 
PH en mecánica y en las transformadas fraccionales de  Fourier está siendo explotada en el campo de la óptica. 
 
Palabras clave: Óptica principio de Huygens’ propagación de la luz. 
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I. INTRODUCTION  
 
No one doubts that physics is an exact science. 
Nevertheless, the notion ’exact science’ “should not be 
interchanged with ’like mathematics’. As stressed by 
Huygens (1990, p. IIIf.), within physics, “one will find 
proofs of a kind, which do not grant the same great 
certainness of that of geometry and which even are rather 
different from those, because here, the principles are 
verified by the conclusions drawn from them, while the 
geometricians proof their theorems out of sure and 
unquestionable principles; the nature of the subjects dealt 
with conditions this”. 

Huygens’ ideas on how light propagates have become 
basic ingredients of our physical picture of the world. The 
notion Huygens’ principle (HP), however, is not uniquely 
used. This paper aims, on the one hand, at the clarification 
of some confusion existing in the literature, in particular, 
about the role of sharp, non-spreading wave fronts and the 
range of applicability. For instance, Feynman (1948) 
wrote, that HP holds exactly for wave mechanics, but only 

approximately for optics, and Scharf (1994) stated, that HP 
is a principle of geometrical optics, not of wave optics. On 
the contrary, the unifying power of HP will be 
demonstrated here. 

Some of that confusion is related to Kirchhoff’s 
formula and reaches up to doubts on the validity of HP at 
all (Miller 1991), or on the possibility of the representation 
of HP by means of Green’s functions (GF) (Johns 1974). 
Both doubts contradict any mind believing in the unity of 
physics. Indeed, Kirchhoff’s solution to the wave equation, 
while being mathematically exact, suffers from the 
drawback of requiring the knowledge of both the field 
amplitude and its gradient on the boundaries. I will trace 
the origin of these mathematical and physical difficulties to 
the notions of degrees of freedom of motion and of 
independent dynamical variables. 

For the sake of the unity of physics, a further goal of 
this paper is to generalize Huygens’ basic ideas. This 
means, that I will keep essentially the imagination, that 
each locus of a wave excites the local matter which 
reradiates a secondary wavelets, and all wavelets 
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superpose to a new, resulting wave (the envelope of those 
wavelets), and so on. Huygens’ ad-hoc omission of 
backward radiation as well as Fresnel’s and other auxiliary 
assumptions (cf. 

Longhurst 1973, §10-2) is requested to be included in a 
natural manner. In particular, attention will be paid to a 
simple, but general and exact description of wave and 
other propagation processes, which obey the principle of 
action-by-proximity and can be described by explicit 
transport equations. 

Shortly, consider a complete set of independent 
dynamical variables of a given problem, ԦܺሺݎԦ, ሻݐ ൌ
ቀ ଵܺሺݎԦ, ,ሻݐ … , ܺሺݎ,ሬሬԦ ,Ԧݎሻቁ, eg, Ԧܺሺݐ  ሻݐ ൌ ሺݑሺݎԦ, ,ሻݐ ,Ԧݎሺݑ߲ /ሻݐ
,ሻݐ߲ ,Ԧݎሺݑ  ሻ being the amplitude of a scalar wave. I seek toݐ
represent its propagation in the most simple form 
 
ԦܺሺݎԦ, ሻݐ ൌ ܪ  ሺݎԦ, ;ݐ ,Ԧݎ  ሻݐ · ܺ ሬሬሬԦ൫ݎԦ,ݐ൯݀ଷݎԦ;    ݐ       (1)ݐ
 
The “Huygens propagator”, ܪ, obviously, obeys the 
CHAPMAN-KOLMOGOROV equation 
(KOLMOGOROV 1931, 1933, CHAMPMAN & 
COWLING 1939) known from (but not restricted to) 
MARKOV processes and related problems of probability 
theory. 
 
,Ԧݎ ሺܪ ;ݐ ,Ԧݎ  ሻݐ ൌ  මܪ ሺݎԦ, ;ݐ , Ԧଵݎ  ଵ ሻݐ · ,Ԧଵݎ ሺ ܪ ,Ԧݎ ;ଵݐ       ;Ԧݎሻ݀ଷݐ

ݐ     ଵݐ                                (2)ݐ
 

Thus, following Feynman (1948), I will express HP 
through this equation. The rigorous treatment requires 
measure theory (Dynkin 1965), but this is much more than 
necessary for the understanding of ’common’ physical 
propagation processes. It may proven useful, however, for 
the fractal description of wave propagation in disordered 
media (West 1992) and the like. 

If ܺ ሺݎԦ,  ሻ obeys a set of partial differential equation ofݐ
first order in time, ܪ ሺݎԦ, ;ݐ ,Ԧݎ   ሻ turns out to be the GF ofݐ
that equation, and Eq.(1) is the solution to the initial-
boundary value problem. If, however, Ԧܺ ሺݎԦ,  ሻ obeys a setݐ
of partial differential equation of second (or higher) order 
in time, no such simple equation exists. Often, the much 
more involved Kirchhoff’s formula (11) is used. This has 
misled some authors to deny a relationship between GF, 
HP and wave propagation at all. 

The use of GF within such considerations is not new, 
of course (Courant et al 1928, Spitzer 1964, Keilson 1965). 
However, our goal is the representation of HP through GF 
rather than a discussion of the probabilistic questions 
behind such approaches. These are interesting enough, but 
need (and deserve!) a separate treatment. We will 
encounter discrete Markov processes when discussing 
computational algorithms realizing HP in discrete form. 

Such forms are required for numerical calculations on 
digital computers. The natural formulation is in terms of 
Markov chains. On the basis of transmission-line 
networks, powerful algorithms have been developed not 
only for electromagnetic problems, but also for diffusion 
and even for mechanical problems (Hoefer & So 1991, 

Christopoulos 1995, de Cogan 1998, de Cogan et al 2005). 
Because here – in contrast to other cellular automata 
algorithms (Chopard & Droz 1998) –, an (idealized) 
physical system is mapped, it is not too surprizing that HP 
applies to the TLM equations, too (Hoefer 1991, Enders 
2001, Enders & Vanneste 2003). Therefore, some 
implications of our approach to HP for practical, in 
particular, wave-optical computations will also be 
discussed. 

For historical and methodological reasons, I start in 
Section 2 with HP in mechanics and continue, in Section 3, 
with Kirchhoff’s formula and certain problems of its 
physical interpretation. Then, Hadamard’s rigorous 
definition of HP is discussed. In section 5, the 
superposition of secondary wave (let)s is represented and 
illustrated by means of general field propagators in the 
space-time domain. This leads to a description of wave 
motion, that overcomes the difficulties in the interpretation 
and application of Kirchhoff’s formula mentioned above. 
Section 6 stresses the role of time-derivatives of dynamical 
variables as independent dynamical variables. When 
equations of 2nd order in time, such as the wave eqation, 
are rewritten as systems of equations of 1st order in time, 
HP applies exactly to those and, consequently, to wave 
optics as well. Section 7 discusses Maxwell’s equations in 
the light of these results, where the fields and currents are 
Helmholtz-decomposed, in order to work with independent 
field variables only. Section 8 applies these thoughts to 
difference equations and discusses implications for 
practical computations. A relationship to the fractional 
Fourier transformation is sketched in section 9. Section 10 
condenses these results into thesis for the general 
formulation of the physics of propagation. Sections 11, 
finally, summarizes and concludes the results. 
 
 
II. HUYGEN’S PRINCIPLE IN MECHANICS 
 
A.Principle for the free fall 
 
As a matter of fact, the principle of superposition has first 
been formulated by Huygens for mechanical motions. 
Shortly, during free fall, the momentually achieved 
increments of speed add to the speed assumed just before 
(Horologium oscillatorium, 1673; after Simonyi, 1990, 
p.241f.). This implies the differentiability of the velocity: 
ݐԦ ሺݒ  ሻݐ݀ ൌ ሻݐԦ ሺݒ    Ԧ, therefore, the smoothness of theݒ݀
trajectories. 
 
 
B.Huygens’ construction for the classical harmonic 
oscilator 
 
The trajectory, ݔሺݐሻ, of an 1D harmonic oscillator can be 
described as function of the initial values of location, ݔሺ0ሻ, 
and momentum, ሺ0ሻ, and of its mass, ݉, and angular 
velocity, ݓ. 
 
ሻݐሺݔ                ൌ ሻݐݓሺݏሺ0ሻܿݔ  ሺሻ

௪
 ሻ                (3)ݐݓሺ݊݅ݏ



Huygens’ Principle as Universal Model of Propagation 

Lat. Am. J. Phys. Educ. Vol. 3, No. 1, Jan. 2009 21 http://www.journal.lapen.org.mx 

 

Here, the internal ሺ݉,ݓሻ und external parameters 
൫ݔሺ0ሻ,  ሺ0ሻ൯ occur in mixed form. Since, generally ݒ
speaking, separations highlight the actual physical 
interrelations, it is desirable to separate internal und 
external parameters, ݅݁, in the case, the constants (laws of 
motion, system parameters) from the variable influences 
(initial conditions), ݂ܿ (WIGNER 1963). 

The separation makes it immediately, if one writes 
down the coupled solutions for both dynamical variables, 
 :ሻݐሺ ሻ andݐሺݔ
 

൬ݔ
ሺݐሻ

 ሺݐሻ൰ ൌ ቆ cos ሺݐݓሻ ଵ
ெ௪

sinሺݐݓሻ
െݓܯ sinሺݐݓሻ cosሺݐݓሻ

ቇ ൬ݔሺ0ሻሺ0ሻ൰ ݂݀݁
ധധധധധܦ ሺݐሻ ൬ݔ ሺ0ሻሺ0ሻ൰ 

 
This form emerges, when one solves Hamilton’s equations 
of motion as a system of equation. The (matrix-valued) 
propagator ܦ ሺݐሻ contains solely the internal parameters 
and the time. It describes rotations in phase space 
ሼݔሺݐሻ,  ሻሽ and exhibits the group propertyݐሺ
 

ሻݐ ሺܦ ൌ  ܦ ሺݐ െ Ԣሻݐ ·  ܦ ሺݐᇱሻ;               0  Ԣݐ   (4)    ݐ
 
This is an example for HUYGENS’ construction and Eq. 
(4) a discrete form of the CHAPMAN-KOLMOGOROV 
equation. 
Finally, one should separate angular frequency and mass; 
for the oscillation is determined by theformer only. This is 
possible through the diagonalization of ܦ(t) (what else?): 
 

ቀ௫ሺ௧ሻሺ௧ሻቁ ൌ ቀ ೢ 
   షೢ

ቁ ቀ௫ሺሻሺሻቁ ൌ ሻݐ෩ሺܦ ቀ௫ሺሻሺሻቁ.     (5) 
 
The transformed variables are 
 

 ቀ௫ሺ௧ሻሺ௧ሻቁ ൌ
ଵ
√ଶ
൬ ଵ
ெ௪


ಾೢ
ଵ ൰ ቀ

௫ሺ௧ሻ
ሺ௧ሻቁ ൌ

ଵ
√ଶ

 ൬ ௫ሺ௧ሻା


ಾೢሺ௧ሻ
ெ௪௫ሺ௧ሻାሺ௧ሻ

൰.   (6) 
 
They exhibit the most simple time dependences 
 

ሻݐሺݔ ൌ ሻݐሺ        ;ሺ0ሻ݁௪௧ݔ ൌ  .ሺ0ሻ݁ି௪௧
 
From them, two first integrals of motion can be read off 
immediately, 
 

ଵܫ ൌ ݁ି௪௧ݔሺݐሻ ൌ ଶܫ      ;(0)ݔ ൌ ݁௪௧ሺݐሻ ൌ  .ሺ0ሻ
 
Since there are no further independent first integrals, the 
total energy can be represented as a function of ܫଵ and ܫଶ. 
Indeed, ܧ ൌ െ݅ܫݓଵܫଶ. As a consequence, the variables (6) 
factorize the Hamilton function (??). 
 

,ݔሺܪ ሻ ൌ
ܯ
2
ሻݐଶሺݔଶݓ 

1
ܯ2

ሻݐଶሺ ൌ െ݅ݔݓሺݐሻሺݐሻ,
ൌ െ݅ݔݓሺ0ሻሺ0ሻ ൌ  .ܧ

 
Finally, the variables (6) obey equations motion no t of 
second order, as ݔሺݐሻ and ሺݐሻ, but of first order in time. 
 

ௗ
ௗ௧
ሻݐሺݔ ൌ ݅ݔݓሺݐሻ;      ௗ

ௗ௧
ሻݐሺ ൌ െ݅ݓሺݐሻ. 

 

The factorization of that equation is obvious, as ቀ ௗ
మ

ௗ௧మ
   ଶቁݓ

ൌ ቀௗ
ௗ௧
 ቁݓ݅ ቀ ௗ

ௗ௧
െ   .ቁݓ݅

It is noteworthy that this result was possible only by 
means of the imaginary unit, ݅ ؠ √െ1.. This provides ݅ 
with a physical (and not only mathematical-calculational) 
justification already within classical mechanics 
(SCHROEDINGER 1926 hesitated to exploit ݅ for the 
formulation of the first-order time-dependent 
SCHROEDINGER equation). 
 
 
C. Huygens’ principle in quantum mechanics 
 
Being a probabilistic theory, quantum mechanics describes 
motion in terms of transition probabilities, ܲ ൌ൏ ܾ|ܽ , 
Rather than trajectories from state ܽ to state  . Usually, 
these states form a complete set such, that they provide a 
decomposition of the unit operator, 1 ൌ ∑ |ܿ ൏ ܿ| . This 
enables us to write 
 

     ܲ ൌ൏ ܾ|ܽ  ∑ ൏ ܾ| ܿ ൏ ܿ|ܽ  ∑ ܲ ܲ.           (7) 
 
Referring to this equation, FEYNMAN (1948) 
emphasized, that HP applies to SCROEDINGER Wave 
Mechanics. Therefore, FEYNMAN considered  the 
CHAPMAN-KOLMOGOROV equation (here, in state 
space) to be the mathematical expression of HP. 
 
 
III. KIRCHHOFF’S FORMULA AND ITS 
DIFFICULTIES OF INTERPRETATION AND 
APPLICATION 
 
Within classical wave theory, the mathematical problem of 
wave propagation is usually reduced to the solution of the 
wave equation, ݅݁ in the simplest 3D case, 
 
        ᇝuሺݎԦ, ሻݐ ؠ ,Ԧݎሺݑ∆ ሻݐ െ ଵ

మ
డమ௨ሺሺԦ,௧ሻ

డ௧మ
ൌ െݍሺݎԦ,  ሻ.          (8)ݐ

 
Where ݑሺݎԦ, ,Ԧݎሺݍ ሻ is the scalar field amplitude andݐ  ሻ theݐ
source density. The GF, ݃ሺݎ,ሬሬԦ ,ሬሬሬԦݎ|ݐ   ሻ, to Eq. (8) is itsݐ
solution for the unit source density, 
 
                ᇝ݃ሺݎ,ሬሬԦ ,ሬሬሬԦݎ|ݐ  ሻݐ ൌ െߜሺݎԦ െ ݐሺߜሬሬሬԦሻݎ െ  ሻ.           (9)ݐ
 
A special solution to Eq. (9) is the expanding (retarded= 
impulsive spherical wave, 
 

݃ሺݎ,ሬሬԦ ,ሬሬሬԦݎ|ݐ  ሻݐ ൌ
ఏሺఛሻఋቀೃିఛቁ

ସగோ
;    ܴ ؠ Ԧݎ| െ ;|ሬሬሬԦݎ      ߬ ؠ ݐ െ  .    (10)ݐ

 
(DESANTO 1992, p. 47) Using this GF, the retarded 
solutions to Eq. (8) read 
 

,Ԧݎሺݑ ሻݐ ൌ   න݀ݐම݃

௧

௧బ

ሺݎ,ሬሬԦ ,ሬሬሬԦݎ|ݐ  ,ሬሬሬԦݎሺݍሻݐ ሻ݀ݐ ܸ 
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െ
1
ܿଶමݑሺݎሬሬሬԦ, ሻݐ

߲
ݐ߲ ݃

ሺݎ,ሬሬԦ ,ሬሬሬԦݎ|ݐ  ሻݐ
߲
ݐ߲ ݑ

ሺݎሬሬሬԦ, ሻ൨ݐ ݀ ܸ 

 
 ݐ݀ ൣ݃ሺݎ,ሬሬԦ ,0ሬሬሬԦݎ|ݐ  ,0uሺr0ሬሬሬԦ0ሻݐ t0ሻ െడబ

௧
௧బ

   uሺr0ሬሬሬԦ, t0ሻ0grሺݎ,ሬሬԦ ,0ሬሬሬԦݎ|ݐ  0ሻ൧ݐ · ݀ Ԧܵ.           (11) 
 
The first term describes the propagation of that part of the 
field amplitude that stems from the external sources, while 
the second and third terms account for the initial and 
boundary conditions, respectively. 

In particular, the third term, KIRCHHOFF’S formula, 
describes the scattering at screens. Its physical 
interpretation is subject to various discussions. MACKE 
(1958) designates this term as a “direct and quantitative 
formulation of HUYGENS’ principle” (cf. also NAAS & 
SCHMID 1974). On the other hand, KIRCHHOFF’S 
formula has been criticized as not only the field amplitude 
itself (which may be complex-valued) is called in, but also 
its spatial derivative, and that derivations has “to be 
performed by nature” (JOHNS 1974, MILLER 1991). 
Thus, “two types of sources of varying strength occur, so 
that the simplicity of HUYGENS’ approach is lost” 
(MILLER 1991). 

It seems to us, however, that these problems originates 
not from HP, but from, (i) the use of the free-space GF 
(10), which does not account for the actual boundary  
conditions, such as screens, and, (ii), from the use of a GF  
which does not represent HP by itself. Indeed, they 
disappear when rewriting the wave equation (8) as 
 

( , ) ( , ),u r t w r t
t

∂
=

∂

G G                           (12) 

 

       
2 2( , ) ( , ) ( , ),w r t c u r t c q r t

t
∂

= Δ +
∂

G G G                     (13) 

 
and using the HUYGENS propagator for this system of 
equations (for more details, see below). 
 
 
IV. HADAMARD'S NOTION OF HUYGENS' 
PRINCIPLE 
 
Basing on his investigations on the CAUCHY problem for 
partial differential equations, HADAMARD (1952, § 33) 
has given the most exact formulation of HP I am aware of. 
 
 
A. Hadamard's syllogism 
 
(A) syllogism is a form of logical conclusion, which has 
been developed already by ARISTOTLE 
(LUKASIEWICZ, 1957, WIENER 1995). The conclusion 
is derived from two premises, a major and a minor ones. 
(B) Minor premise. The propagation of light pulses 
proceeds without deformation (spreading, tail building) of 
the pulse; 
(C) Conclusion. In order to calculate the effect of our 
initial luminous phenomenon produced at t = t0, one may 

replace it by a proper system of disturbances taking place 
at t = t´ and being distributed over the surface of the sphere 
with centre t0 and radius c(t´- t0). 

The Major premise (A) is the principle of action-by-
proximity and, philosophically speaking, a "law of 
thought". The Minor premise (B) postulates the 
propagation of none-spreading wave fronts. The 
conclusion (C) is essentially HUYGENS' construction. 

As a matter of fact, in the Conclusion (C), the isotropy 
of re-irradiation can be replaced with the re-irradiation 
according to the actual local propagation conditions. This 
means, that the secondary sources represent the local 
propagation properties of the material under consideration 
(or that of free space). For instance, in anisotropic media, 
the reaction of the secondary sources is anisotropic, while 
in nonlinear media, their excitation and re-irradiation is not 
proportional to the amplitude of the exciting field 
(GUENTHER 1988). 

Now, when compared with Major premise, the Minor 
premise is rather special. It is necessary for geometrically 
constructing the wave front, but not for the basic principle 
of action-by-proximity and not for the cycle of excitation 
and re-irradiation. One of the main points of this paper is 
to examine what happens, when it is removed. 
 
 
B. 'Special' Huygens' principle: Minor Premise 
included 
 
Often, the existence of sharp, non-spreading wave fronts is 
already referred to as HP (COURANT & HILBERT 1968, 
NAAS & SCHMIDT 1974, 
http://www.mathpages.com/home/kmath242/kmath242.ht
m). This phenomena is widely known for 
D'ALEMBERT'S wave equation. Another classical 
example is the distortion-free pulse propagation along 
special 1D transmission lines (HEAVISIDE, PUPIN). 
HADAMARD'S conjecture states that the wave front is 
not spreading in odd space dimensions (HADAMARD 
1953, NAAS & SCHMIDT 1974). It should be clear, 
however, that, despite of its practical consequencies for 
signal transmission, the Minor premise (B) is a secondary 
attribute of propagation processes, while the Major 
premise (A) and the Conclusion (C) are primary ones. 

Thus, analogously to the solution of total-hyperbolic 
differential equations (NAAS & SCHMIDT 1974), one 
may define also within optics and for general propagation 
phenomena, respectively, a 'Special' HUYGENS' 
Principle, where proposition (B) is an essential ingredient. 
It corresponds to a distortion-free signal transmission; the 
speed of propagation of the waves does not depend on the 
oscillation frequency of the source and the waves suffer 
not any deformation through smearing or wake building (cf 
also IWANENKO & SOKOLOV 1953). In this case, for 
the validity of HP it is necessary and sufficient that Green's 
function of D'ALEMBERT'S wave equation is 
proportional to the delta-function δ(R - cτ) or to its 
derivatives (NAAS & SCHMIDT 1974). 

The construction of equations the solutions to which 
are non-spreading sharp wave fronts has been developed to 
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a special topic of its own (see, eg, GUENTHER 1988). 
These results may proven to be useful for the design of 
dispersionless signal transmission systems. Is there a 
relationship to reflectionless potentials for the 
SCHRODINGER equation? 
 
 
C. 'General' Huygens' principle: Minor Premise not 
included 
 
On the other hand, action-at-proximity and superposition 
are not bounded to sharp wave fronts neither is 
HUYGENS' construction, as we will show below. Thus, 
Major premise (A) together with Conclusion (C) has also 
be termed HP, eg, by JOHNS (1974), BICKEL & 
HANDER (1988), MILLER (1991). We will call HP the 
combination of action-at-proximity ("elastic waves in 
aether" in HUYGENS' pictural imagination) and 
superposition of secondary wavelets (HUYGENS' 
construction, suitably  generalized). The shape of the wave 
front may vary from case to case, without influence on 
these basic ingredients of propagation, but the essentials of 
HUYGENS' (and Faraday's) imagination of propagation 
are conserved. The advance of this notion of HP consists 
in that its applicability becomes extremely wide; in fact, in 
this form, HP qualifies to a clue for unifying the physical 
and mathematical description of a huge variety of transport 
and propagation  processes. 
 
 
V. GREEN'S FUNCTIONS FOR 
REPRESENTING HUYGENS' PRINCIPLE 
 
From the theoretician's point of view, GF represent one of 
the most powerful and, at once, most beautiful and clear 
(propagator!) tools of mathematical physics at all 
(DYSON 1993). Therefore, it is naturally expected that 
there are GF which do provide a representation of HP. 
 
A. Huygens propagators 
 
Without loss in generality, let us study the equation 
 

3( , ) ( , ; , ) ( , ) ;u r t H r t r t u r t d r′ ′ ′ ′ ′= ∫∫∫
G G G G G

  t>t´,   (14) 

 
describing the propagation of the scalar field ( , )u r tG  from 
the space-time point ( , )r t′ ′G  to the space-time point ( , )r tG . 
Which are the general properties of the integral kernel, H? 
 
i. If ( , )u r tG  fulfills the partial differential equation 

                           
( ) ( , ) ( , ),u L r u r t q r t

t
∂

= −
∂

G G G                   (15) 

where ( )L rG is a partial differential expression in rG and 
( , )q r tG the source density, then 

 

0 0

0 0 0 0

( , ; , )

( ) ( , ; , ) ( ) ( ).

H r t r t
t
L r H r t r t r r t tδ δ

∂
=

∂
= − − −

G G G
      (16) 

 
Thus, H is the Green's function of the differential equation 
(15). If ( , )u r tG  fulfills a partial differential equation of 
higher order in time, there is no simple relationship (14). 
 
ii) ( , )u r tG  fulfills the initial condition 
 

0( , 0) ( ).u r t u r= =
G G

                    (17) 
 
If H obeys the initial condition 
 

0 0 0 0 0lim ( , ; , ) ( ),t t H r t r t r rδ→ + = −
G G  (18) 

 
and 
 

3
0( , ) ( , ; ', 0) ( ') ',

0,

u r t H r t r u r d r

t

=

>
∫∫∫

G G G G G
 (19) 

 
iii) ( , )u r tG  fulfills the boundary condition 
 

( ) ( , ) 0; ,B r u r t r S= ∈
G G G

              (20) 
 
on the inner surface, S, of the domain considered, if H does 
so, 
 

 0 0( ) ( , ; , ) 0; , ' .B r H r t r t r S r S′ = ∈ ∉
G G G G G  (20) 

 
This can be achieved by means of an eigenfunction 
expansion (DeSanto 1992). 

Thus, a Huygens propagator, H, is a GF (16) of a 
differential equation of first order in time (15) which, 
additionally, obeys the initial condition (18) and the 
boundary conditions (21) of the problem under 
consideration. In other words, it contains both the 
propagation conditions in the volume and on the spatio-
temporal boundaries. Due to this, the difficulties with the 
boundary terms in Kirchhoff's formula are overcome. 
 
 
B. The Chapman-Kolmogorov equation as 
generalization of Huygens' construction 
 
Nesting the integral equation (1) into itself yields 
 

0 0

3 3
0 0 1 1 1 1 1 0

0 1

( , ) ( , ; , )

( , ; , ) ( , ) ;

u r t H r t r t

H r t r t u r t d r d r

t t t

= ×

> >

∫∫∫
∫∫∫

G G G

G G G G G
 (22) 

 
Rearranging the indices and comparing this with the 
original equation (1) gives 
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10 0 1 1

3
1 1 0 0 1

0 1

( , ; , ) ( , ; , )

( , ; , ) ;
.

VH r t r t H r t r t

H r t r t d r
t t t

= ×

> >

∫∫∫
G G G G

G G G
 (23) 

 
This is the Chapman-Kolmogorov equation in the space-
time domain. It generalizes Huygens' construction to 
spreading wave fronts; the domain of sources of secondary 
wavelets is not necessarily a surface, but, in general, a 
certain volume, V1. Non-spreading wave fronts correspond 
to δ-functions in the GF reducing the volume integral to a 
surface integral. In such cases, diffraction at screens is 
treated in a manner resembling Kirchhoff's formula, but 
without its difficulties mentioned above. 

Since the time interval 0t t−  can be infinitesimally 
small, the Chapman-Kolmogorov equation is a 
mathematical formulation not only of the superposition of 
secondary wavelets, but also of the action-at-proximity. 

The validity of a relation like (23) is sometimes called 
a Markov property; it plays an important role for the path-
integral representation of dynamical processes (Feynman 
& Hibbs 1965). 

Now, as a matter of fact, the GF (10) of the wave 
equation (8) does not obey the Chapman-Kolmogorov 
equation (23). Indeed, the latter is obeyed by functions 
being the solution to partial differential equations of first 
order in time (this may be easily proven by means of the 
Fourier transformation w.r.t. the time variable). This was, 
perhaps, the reason for Feynman (1948) to state that, in 
optics, HP holds true only approximately. 
 
 
C. Treatment of differential equations of higher-order 
in time 
 
The way out consists in that, for wave and other 
propagation processes of higher order in time, one has to 
'return' to systems of first-order equations. Remarkably 
enough, these are often the fundamental relations, viz, 
constitutive equation(s) and conservation law(s). 

For instance, the Maxwell equations supplemented 
with appropriate constitutive equations connecting the 
field strengths with the inductions represent such a system. 
Another example is the following system of equations of 
hyperbolic heat conduction theory (Mueller 1967), 
 

1
( , ) ( , ) ,1( , ) ( , )0

p

J r t J r t
t T r t T r t

C

λ
τ τ

ρ

⎛ ⎞∇⎜ ⎟⎛ ⎞ ⎛ ⎞∂ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟∂ ⎜ ⎟⎝ ⎠ ⎝ ⎠∇⎜ ⎟
⎝ ⎠

G G
G G

i

       (24) 

 
(J heat current density, T temperature, τ heat flux 
relaxation time, λ  heat conductivity, pCρ  heat capacity 
per unit volume at constant pressure). The physics behind 
the necessity to work with first-order equations will be 
discussed in the next section. 

The GF for the system of equations (24) is the 4 4×  
matrix-valued function 
 

ˆ ˆ
ˆ ,

ˆ ˆ

JJ JT

TJ TT

G G
G

G G

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

GG G G

GG G G

              

 (25) 

 
being defined as the solution to the matrix-valued equation 
 

1
ˆ ˆ

1 0

1̂ 0
( ') ( ').

ˆ0 1

p

G G
t

C

r r t t

λ
τ τ

ρ

δ δ

⎛ ⎞∇⎜ ⎟∂ ⎜ ⎟=
∂ ⎜ ⎟∇⎜ ⎟

⎝ ⎠
⎛ ⎞

+ − −⎜ ⎟⎜ ⎟
⎝ ⎠

i
i

G
G G

G

 (26) 

 
When ˆ ( , ; ', ')G r t r tG G

 also accounts for the actual initial 

0 ( ) ( , 0)J r J r t= =
G GG G

, 0 ( ) ( , 0)T r T r t= =
G GG G

 
and boundary 

conditions, it becomes the Huygens propagator, 

0 0
ˆ ( , ; , )H r t r tG G

, of the considered problem, and the 

solution ˆ( , )J T  is given by a single integral, again. 
 

30

0

ˆ ˆ ( , )( , )
;

ˆ ˆ ( , )( , )

0

JJ JT

TJ TT

H H J r tJ r t
d r

T r tT r t H H
t

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

>

∫∫∫
GG G G

GG G G

GG
GGG  (24) 

 
 
VI. THE TIME DERIVATIVE OF THEWAVE 
AMPLITUDE AS INDEPENDENT 
DYNAMICAL VARIABLE 
 
Huygens propagators of the wave equation in the form 
(12) describe the common propagation of the field (wave) 
amplitude, ( , )u r tG , and of its time-derivative, 

( , ) ( , )u r t w r t
t
∂

=
∂

G G , as independent dynamical variables, 

which are created simultaneously and propagates together 
and in mutual interaction. When considering the pair 
( , )J T
G

 of Eq. (24) or counter-propagating waves 
(d'Alembert's solution), the physical content of the 
derivative is even more obvious. This is the fundamental 
difference between our interpretation of HP and previous 
ones, but Hadamard (1952). 

Nowadays mechanical theories often concentrate on 
equations of motion, such as Eq.(8), or Lagrange's 
equation of motion, while the role of velocity, ݒԦ ൌ  ,ݐ݀/Ԧݎ݀
and Cartesian momentum, Ԧ ൌ  respectively, as ,ݐ݀/Ԧݎ݀݉
dynamical variables on its own is explicitly considered 
only in Hamilton's equations of motion (and in statistical 
mechanics). However, the independence of the initial 
values of location, ݎሬሬሬԦ ൌ ݐԦሺݎ ൌ 0ሻ, and of velocity, 
ሬሬሬሬԦݒ ൌ  ሻݐԦሺݎ Ԧሺ0ሻ, implies the independence of the values ofݒ
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and ݒԦሺݐሻ for all later times. And this qualifies ݎԦሺݐሻ and 
 .ሻ as independent dynamical variablesݐԦሺݒ

Obviously, the same holds true for (possibly complex-
valued) wave amplitudes, ߰, and their time-derivates 
 as recognized within Lagrangean and Hamiltonian ,ݐ߲/߲߰
field theories. Within optics, this matter of fact is 
commonly hidden by the use of time-harmonicwaves. The 
Schroedinger equation is one common parabolic equation 
for the two independent dynamical variables, ߰ and ߰כ, or 
ܴ݁ሺ߰ሻ and ݉ܫሺ߰ሻ. 
We generalize these results in the following 
 
Conjecture 1 The number of independent dynamical 
variables is equal to the number of time-derivatives in the 
equation(s) of motion. 

In general, there are various complete sets of 
independent dynamical variables for a given problem. 

His number can be reduced by symmetry. For instance, 
in a travelling electromagnetic wave in free space, all 12 
field components in Maxwell's macroscopic equations are 
proportional to only two field components (eg, Ex and Ey) 
determining intensity and polarization. 

Scalar propagators obeying the Chapman-Kolmogorov 
equation are positive definite. Hence, the Huygens 
propagators for processes exhibiting interference are 
matrices (classical waves) or complex-valued (matter 
waves). 

The Hamilton-Jacobi equation (wave picture) converts 
the Hamiltonian equations of motion (particle picture) into 
a non-linear 'wave' equation (cf also Einstein 1917). It 
would thus be interesting to explore the applicability of HP 
to the former. 
 
 
VII. MAXWELL'S EQUATIONS AND 
HUYGENS' PRINCIPLE 

 
From the point of view of initial-boundary value problems, 
the Maxwell equations represent an incomplete set of 
partial differential equations of 1st order in time for the 12  
field variables ܦ,ሬሬሬԦ ,ሬԦܤ   .ሬሬԦܪ ሬԦ andܧ

 
 · ሬሬԦܦ ൌ  (28a)                                 ,ߩ 

 
 · ሬԦܤ ൌ  0,                                 (28b) 

 
డሬԦ
డ௧
ൌ  െ ൈ ܧሬԦ,                               (28c) 

 
డሬԦ
డ௧
ൌ  െ ൈ ܧ.ሬሬሬԦ                               (28d) 

 
We complement them through the simplified material 
equations 
 

߬ாሬԦ
డሬԦ

డ௧
 ܧሬԦ ൌ   ሬሬԦ

ఌೝఌబ
,                          (29a) 

      

߬ுሬሬԦ
డுሬሬԦ

డ௧
 ܪሬሬԦ ൌ   ሬԦ

ఓೝఓబ
,                         (29b) 

 
accounting for finite relaxation times (߬ாሬԦ, ߬ுሬሬԦ). The source 
equations (28a, 28b) make the vectors ܦሬሬԦ ܽ݊݀ ܤሬԦ not to 
represent three independent dynamical variables each. 
This deficiency of 2 independent dynamical variables is 
usually ascribed to charge and energy conservation 
implicitly imposed. Why, then, the conservation of 
mometum and angular momentum do not diminuish the 
number of independent dynamical variables? – As  a 
consequence, the Huygens propagator is degenerated, and 
so-called spurious modes may appear in numerical 
calculations. 

Now, in terms of the Helmholtz decomposition 
(Helmholtz 1858, Keller 2005), ܤሬԦ ൌ ሬሬሬሬԦ்ܤ   ሬሬሬሬԦ, is purelyܤ
transverse: ܤሬԦ ൌ ,ሬሬሬሬԦ்ܤ ሬሬሬሬԦܤ ൌ 0, and only the transverse 
components of ܪሬሬԦܽ݊݀ ܧሬԦ enter the Maxwell equations. In 
turn, rhe charge conservation is related to solely the 
longitudinal components of ܦሬሬԦܽ݊݀ ଔԦ. 
 

 · ଔሬሬሬԦ 
డఘ
డ௧
ൌ  ;0 · ሬሬԦܦ ൌ  (30)                   .ߩ

 
For this, we can rewrite Eqs. (31) as 

 
 · ሬሬሬሬԦܦ ൌ  (31a)                            ,ߩ 

 
 · ሬሬሬሬԦܤ ൌ  0,                            (31b) 

 
డሬሬሬሬሬԦ
డ௧

ൌ  െ ൈ ்ܧሬሬሬሬԦ,                       (31c) 
 

డሬሬሬሬሬԦ
డ௧

ൌ    ൈ ்ܪሬሬሬሬሬԦ െ  ଔ்ሬሬሬԦ.                     (31d) 
 

It is seen that the Helmholtz decomposition genuinely 
relates the propagation of electromagnetic waves with the 
transverse field components only. Its drawback – and, 
perhaps, reason of low acceptance – consists in the fact 
that it is not Lorentz covariant, so that it has to be 
separately performed in each system of reference. The 
criterion of being compatible with special relativity is, 
however, not the Lorentz covariance, but the compatibility 
with the Poincare group (Dirac 1949). 

Eqs. (29) reveal that it depends on the properties of the 
matter in which the electromagnetic field under 
consideration exists, how many independent dynamical 
variable are represented by ܧሬԦ ܽ݊݀ ܪሬሬԦ. Without loss of 
generality, I confine myself to the simplest case, viz, that 
of vacuum, ܧሬԦ ൌ ,ߝ/ሬሬԦܦ ሬሬԦܪ ൌ  . Note, that in contrast toߤ/ሬԦܤ
the common use to work with the pair ሺܧሬԦ,  ሬሬԦሻ, here, I keepܪ
the pair ሺܦሬሬԦ,  ሬԦሻ in view of its position in the Maxwellܤ
equations, and not to contradict Mie (1941) and 
Sommerfeld (2001). 
 
Let us further assume that 
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ሬሬԦ்ܦ ൌ ൭
ሻݖ௫ሺܦ
ሻݖ௬ሺܦ
0

൱ ; ሬԦ்ܤ  ൌ ൭
ሻݖ௫ሺܤ
ሻݖ௬ሺܤ
0

൱ ;  ଔԦ் ൌ ൭
݆௫ሺݖሻ
݆௬ሺݖሻ
0

൱.    (32) 

 
Then, the four independent dynamical variables 
ሺܤ௫,௬,  ௫,௬ሻ obey the complete set of equationsܦ
 

ࣔ
࢚ࣔ
൮

࢞
࢟
࢞ࡰ
࢟ࡰ

൲ ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

   
ࢿ

ࣔ
ࢠࣔ

  െ 
ࢿ

ࣔ
ࢠࣔ



 െ 
ࣆ

ࣔ
ࢠࣔ

 

ࣆ

ࣔ
ࢠࣔ

   ی

ۋ
ۋ
ۋ
ۊ

൮

࢞
࢟
࢞ࡰ
࢟ࡰ

൲ െ ൮



࢞
࢟

൲.     (33) 

 
The corresponding GF, 

 

ࡳ ൌ ൮
࢞࢞ࡳ ࢟࢞ࡳ ࢞ࡰ࢞ࡳ ࢟ࡰ࢞ࡳ
࢞࢟ࡳ ࢟࢟ࡳ ࢞ࡰ࢟ࡳ ࢟ࡰ࢟ࡳ
࢞࢞ࡰࡳ ࢟࢞ࡰࡳ ࢞ࡰ࢞ࡰࡳ ࢟ࡰ࢞ࡰࡳ
࢞࢟ࡰࡳ ࢟࢟ࡰࡳ ࢞ࡰ࢟ࡰࡳ ࢟ࡰ࢟ࡰࡳ

൲,                      (34) 

obeys the same equation, where the vector ሺ0 0 ݆௫ ݆௬ሻ is 
replaced with 1ߜሺݖ െ ݖ ′ሻߜሺݐ െ ݐ ′ሻ, 1 denoting the 4 ൈ 4-
matrix GF is reducible as it is the direct product of the 
2 ൈ 2-matrix GF of the two equations, into which Eq.(33) 
separates. 
 

ࣔ
࢚ࣔ
൬
࢞
࢟ࡰ
൰ ൌ ቌ

 
ࢿ

ࣔ
ࢠࣔ


ࣆ

ࣔ
ࢠࣔ


ቍ ൬

࢞
࢟ࡰ
൰ െ ൬


 ൰,             (35)࢟

 

ࣔ
࢚ࣔ
൬
࢟
࢞ࡰ
൰ ൌ ቌ

 െ 
ࢿ

ࣔ
ࢠࣔ

െ 
ࣆ

ࣔ
ࢠࣔ


ቍ ൬

࢟
࢞ࡰ
൰ െ ൬࢞

൰.        (36) 

 
The Fourier components ݁ሺఠ௧ି௭ሻ of the corresponding 
2 ൈ 2-matrix GF obey the equations 
 

ቌ
࣓ േ 

ࢿ

േ 
ࣆ

࣓
ቍቆ

ࡳ
േ ࡳ

േ

ࡳ
േ ࡳ

േ ቇ ൌ ቀ 
 ቁ.         (37) 

 
These are irreducible, but can be diagonalized like 
Eq.(35), 
 

డమ

డ௧మ
௬ܦ െ 

ଵ
ఌబఓబ

డమ

డ௭మ
௬ܦ ൌ  

డ
డ௧
݆௬ .            (38) 

 
As in the 3D case, it is straightforward to show that the GF 
of the 1D wave equation (38) does not obey the Chapman-
Kolmogorov equation, while the 2 ൈ 2-matrix GF of Eq. 
(35) does. 
 
 
VIII. DISCRETE MODELS OF PROPAGATION 
 
Let us illustrate these thoughts by means of simple discrete 
propagation models. 
 
A. One-step Markov chins-discrete Huygens 
propagators 
 

In one-step Markov chains, each two subsequent states, 
ሬԦݑ ؠ ሺݑ,ଵ, ,,ଶݑ … ሻ and ݑሬԦାଵ, where the second index 
may label spatial cells, are connected through a transition 
matrix, ܲ, as 

ሬԦାଵݑ ൌ   ܲ · ;ሬԦݑ ݇ ൌ 0, 1, …                    (39) 
 
For k-independent ܲ, one obtains 
 

ሬԦݑ ൌ   ܲ ·  ሬԦ                                (40)ݑ
 

ൌ  ܲିଵ · ሬԦଵݑ ൌ ܲିଵ · ሺ ܲ ·  ሬԦሻ                  (41)ݑ
 
From this, the fundamental formula follows, which 
describes the evolution of such chains, viz, the Chapman-
Kolmogorov equation(s) 

 
ܲ ൌ   ܲିଵ · ܲ ൌ   ܲି · ܲ; 0 ൏ ݈ ൏ ݇        (42) 

 
Obviously, Eq. (42) is a discrete analogue to Eq.(23) in 
describing the superposition of secondary 'wavelets'; and 
this holds independently of the fact, that one-step Markov 
chains with real-valued state variables describe diffusion-
like processes (overdamped waves). 

In discrete spaces, the principle of action-at-proximity 
means, that, during one time interval, only the next-
neighbouring cells can be reached. A most important 
example of this class of Markov chains is constituted by 
the random walks (RW) (Spitzer 1964). 

Consider the symmetric simple RW in 1D. An 
imaginary particle in an infinite chain of cells is supposed 
to hop at each step to one of the two neighboring cells, 
where the probability of hopping forward and backward 
equals one-half. The probability, ,, to find the particle at 
time step k in cell i is given by the recursion formula. 
 

, ൌ  
1
2 ൫ିଵ,ିଵ   ,ିଵ,ାଵ൯

 
݇ ൌ 0, 1, 2… ;െ∞ ൏ ݅ ൏ ∞ .                (43) 

 
This is the well-known Euler forward scheme for the 
diffusion equation, ߲ܶ/߲ݐ ൌ  ߲ଶܶ/߲ݔଶ. 

The f undamental solution to Eq. (43) reads (the 
particle starts at k = 0 in cell i = 0). 

 

,
ࢌ ൌ ቊ2

ቁቀି

0
  ; ݊ ؠ ||ି


   ࢘ࢋࢍࢋ࢚
 ቋ .      (44)࢘ࢋࢍࢋ࢚ିࢌࢇࢎ

 
This 'discrete Gaussian' is the analogue to the fundamental 
solution of the di®usion equation. The corresponding GF 
("Green probability" in Keilson (1965), p. 80), 
 

ᇱᇱ;,ࡳ ൌ ᇱି,ᇲି
ࢌ  ,                     (45) 

 
possesses the Markov property (42). 

 
′′;,ࡳ ൌ ∑ ′′′′;′′,′′ࡳ′′′′;,ࡳ ;   ′′   (46)     . ′
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In other words, the conditional or transition probabilities, 
which connect the different states of an one-step Markov 
chain, are at once the matrix elements of the GF of the 
corresponding difference equation of first order in the time 
parameter. 

Pascal's triangle is a simple, but instructive example of 
Markovean 'number diffusion' obeying Huygens' recipe of 
construction (de Cogan & Enders 1991). 

Accounting – analogously to the continuous case – for 
the actual boundary conditions, one may term discrete 
Huygens propagators such GF, or – more generally – 
evolution operators, which, per one time step, connects 
solely next-neighboring states and posses the Markov 
property (46). 
 
 
B. A two-step Markov chain (random walk with 
correlation) 
 
For first-order processes, such as the simple random walk, 
the Huygens propagator proves to be identical with the GF 
of the difference equation. This perfectly parallels the 
continuum case, where the Chapman-Kolmogorov 
equation (23) is fulfilled by the GF of equations of first-
order in the time variable. Correspondingly, the GF of a 
multi-step equation of motion is, in general, not a 
(discrete) Huygens propagator. To get such one, one has 
'to return' to a system of one-step equations of motion for a 
complete set of independent dynamical variables. 

As an example, consider the partial difference equation 
of 2nd order 
 

,ାࢂ ൌ ൫ࢂା,ି  ା൯,ାࢂ  ሺ࣋ െ  (47)  , ,ࢂሻ࣎
 

being a discrete analogue to the telegraph equation; the 
parameters τ and ρ are determined by material parameters 
and mesh sizes. As such it has been proposed by Goldstein 
(1951) to model diffusion without the artefact of infinite 
speed of propagation. Du Fort & Frankel (1953) have 
shown that it realizes an explicit, but unconditionally 
stable finite difference routine for numerically solving the 
1D diffusion equation. For ρ = 0, one gets Lax' scheme 
(1954) for hyperbolic equations of first order, cf eqs.(49) 
below. It also describes travelling voltage pulses on a 
network of lossless transmission lines and resistors, and 
the passivity of this network explains the stability of this 
scheme (Johns 1977, de Cogan 1998). The corresponding 
GF (Enders & de Cogan 1993) is not a Huygens 
propagator, because it does not obey the Chapman-
Kolmogorov equation (46). 

In the case of spatially variable material parameters, 
the determination of τ and ρ in Eq.(47) is not unique (Du 
Fort & Frankel 1953, Zauderer 1989). This determination 
can be made unique, when working with a system of ¯rst-
order equations. Thus, following D’ALEMBERT, the field 
ܸ may be decomposed into a left-running part, ܴ, and a 
right-running part, ܮ . 
 

ܸ, ൌ ܴ,   , .                            (48)ܮ
 

Within a probabilistic treatment, ܴ,ሺܮ,ሻ is the 
probability to arrive from the right (left) at node ݅ at step ݇. 
Within a network approach, the probabilities are replaced 
with traveling voltage pulses. This leads to the following 
system of two coupled partial difference equations of first 
order (Goldstein 1951, Johns 1977, Zauderer 1989), 
 

ାଵ,ܮ ൌ ߬ ܮ,ିଵ   ோ ܴ,ିଵ ,            (49)ߩ
 

ܴାଵ, ൌ ,ାଵܮߩ  ߬ோ ܴ,ାଵ .             (50) 
 
Here, in dependence of the choice of how ߩோ, and ߬ோ, 
vary from cell to cell, one obtains in the continuum limit 
the forward or backward Kolmogorov equation (Zauderer 
1989) or Fick's second law (Johns 1977, Enders & de 
Cogan 1992). 
In matrix form, eqs. (49) read ሺ߂േܴ,േଵሻ 
 

ቆܮ
ሬԦାଵ
ሬܴԦାଵ

ቇ ൌ ൬߬
 ି߂ ି߂ ோߩ
ା߂ ߩ ߬ோ ߂ା

൰ቆܮ
ሬԦ
ሬܴԦ
ቇ ؠ ܦ ቆܮ

ሬԦ
ሬܴԦ
ቇ .     (51) 

 
This is the two-step analogue to Eq. (39). ܩ;;´;´ ൌ
ሺܦିᇱሻ, is the GF of eqs. (49). 
 
 
C. Proper Huygens propagators 
 
For ߩ ൌ ோߩ ൌ ߩ ൌ and ߬ ݐݏ݊ܿ ൌ ߬ோ ൌ ߬ ൌ  the ,ݐݏ݊ܿ
system (51) is formally equivalent to Eq. (47). In this case 
– in agreement with the Caley-Hamilton theorem – the 
eigenvalue equation of the transition matrix ܦ reads 
 

ܦ ൌ ିࢤሺ࣎  ܦାሻࢤ  ሺߩଶ െ ߬ଶሻ1 .         (52) 
 
This corresponds to the diagonalization of the system (51) 
into the form of Eq. (47) for both ܮ ሬሬሬԦ y ሬܴԦ. 

It is proposed to term the corresponding Huygens 
propagators, such as ሺܦିᇱሻ,, proper or irreducible, 
since the elements of them obey the multi-step equation of 
motion, too. This is an important property, because in this 
case, the eigenvalue equation of the transition matrix ܦ , 
diagonalizes the ¯first-order equations of motion to a 
physically relevant equation. 
A counter-example are the difference equations relating 
ሺሬܸԦାଵ, ܸሻ to ሺሬܸԦିଵ, ܸିଶሻ. 
 
Conjeture 2 The eigenspectrum of the proper Huygens 
propagator approximates the eigenspectrum of the object 
under investigation. 

This would foster the fact, that the discrete formulation 
of HP yields construction principles for numerical 
algorithms for a wide variety of problems (cf Hoefer 
1991). In particular, it would largely simplify the 
computation of eigenmodes by means of the Caley-
Hamilton theorem. 
 
Conjeture 3 In d dimensions, the discrete modelling of 
scalar wave propagation is related to a 2d-step Markov 
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chain. In turn, in a n-step Markov chain, each step 
corresponds to 1 degree of freedom of motion, and vice 
versa: A motion with n degrees of freedom (n independent 
dynamical variables) can be mapped onto a n-step Markov 
chain. 

The validity of this hypothesis would have important 
consequencies for the understanding of complex systems 
(Ebeling 1992). 
 
 
IX. FRACTIONAL FOURER TRANSFORMA-
TION AND HUYGENS’ PRINCIPLE 

 
The fractional Fourier transformation (FracFT) has been 
introduced as generalization of the all-present ordinary 
Fourier transformation (FT) with interesting applications 
in quantum mechanics (Namias 1980), optics (Lohmann 
1993), and other ¯elds. Its advantages for the description 
of optical propagation has been stressed by Alieva et al 
(1994). One may wonder, why its relationship to HP as a 
basic principle of optical propagation has not yet 
established. This connection multiplies the advantages 
noted by Alieva et al (1994) and adds new ones. 
The FracFT of a function f(x) is the function 
 

ሻݑఈሺܨ ൌ ࣠ఈ ݂ሺݔሻ ൌ  ݂ሺݔሻןܭሺݔ, ݔሻ݀ݑ
ାஶ
ିஶ  ,   (53) 

 
with the kernel (n = 1; 2; ..:) 
 

ןܭ ൌ

ە
۔

 ටଵିۓ ୡ୭୲ሺןሻ
ଶగ

  ݁ሺ௫
మା௨మሻ ୡ୭୲ഀమି௫௨ ୡୱୡሺఈሻ; ߙ   ് ߨ݊

ݔሺߜ െ ;ሻݑ ߙ   ൌ ߨ2݊
ݔሺߜ  ;ሻݑ ߙ    ൌ ሺ2݊ െ 1ሻߨ

        (54) 

 
This kernel is continuous in the generalized function sense, 
࣠ଶగ is the identity, and ࣠ଶగାగ/ଶ is the ordinary FT. 
Almeida (1993, 1994) has derived the group property 
࣠ఈ࣠ఉ ൌ ࣠ఈାఉ,ie, 
 

,ݔఈାఉሺܭ ሻݖ ൌ  ,ݔఈሺܭ ,ݑఉሺܭ ሻݑ ݑሻ݀ݖ
ାஶ
ିஶ  .       (55) 

 
The isomorphism with the Chapman-Kolmogorov 
equation (23) is obvious. In fact, up to a phase factor, 
,ݔఈሺܭ  ሻ is equivalent to the GF of the time-dependentݑ
Schroedinger equation for the harmonic oscillator 
(Agarwal & Simon 1994). 

Generally speaking, the kernel of any transformation 
satisfying a relation like (55) is equivalent to the GF of a 
parabolic differential equation (such as the paraxial wave 
equation) in appropriate coordinates and, consequently, 
describes the propagation of some field. Therefore, the 
question arises, whether there are useful generalizations of 
the FracFT through choosing for the kernel other 
propagators, than that for the harmonic oscillator or for the 
parabolic index profile. In other words, are there further 
potential functions or index proles which yield integral 
transformations with similarly useful properties as those of 
the Fourier and fractional Fourier transformations? 
Furthermore, are there applications for the generalization 

of Eq. (55) to matrix functions as kernels of integral 
transformations? 

From a computational point of view, it may be 
favourable to have got a discrete formulation of this 
theory. According to the foregoing section, this should be 
possible in terms of Markov chains or (transmission-line) 
networks. This could open a novel approach to wave-
optical computations. 
 
 
X. GENERAL THESIS FOR DESCRIBING 
PROPAGATION PROCESSES 
 
The following thesis are proposed to built a starting point 
for an extension of the definition and application of HP to 
all propagation phenomena, which can be described 
through linear explicit differential and difference 
equations, respectively. 
1. Propagation via action-at-proximity proceeds such, that 
the field excites secondary sources, which re-irradiate the 
field accordingly to the actual boundary and continuity 
conditions. Topologically, this principle applies on 
structures with next-neighbour interaction (local theories; 
cellular automata; certain coupled maps). 
2. The propagating field is represented by a set of f 
independent (but interacting, of course) dynamical 
variables, where f equals the number of time-derivatives in 
the governing equations. In general, there are several such 
sets. A complete set obeys a system of f differential and 
difference equations of first order, respectively. Examples 
are the right-and left-running waves in Eq.(48), the wave 
amplitude and its ”inner” speed of change, or field and flux 
density [eqs. (24) to (27)]. The flux density may play the 
role of the time-derivative of the field as independent 
dynamical variable, while its vector components are not 
independent of each other dynamical variables. A set of f 
one-step Markov chains provides the appropriate form for 
a discrete model of the propagation of f independent 
variables. 
3. The (matrix-valued) GF of such a system contains the 
propagation of that complete set. It represents HP in the 
sense of action-at-proximity and superposition of 
secondary wavelets by means of the Chapman-
Kolmogorov equation. In order to avoid perturbing 
boundary terms and to completely represent the 
propagation problem under consideration, the GF should 
fulfill the boundary conditions for the field variables in 
appropriate form. For such GF the term Huygens 
propagator is proposed. 
4. The elimination of backward motion and the 
conservation of sharp, non-spreading fronts during 
propagation are special cases, that emerge naturally from 
the governing equations and do not need additional 
assumptions. 
 
 
XI. CONCLUSIONS 
 
For Feynman (1948), HP was – in geometrical-optical 
formulation – valid for matter waves, since the 
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Schroedinger equation is of first order in time; the 
Chapman-Kolmogorov equation holds true for the 
amplitudes of the quantum-mechanical transition 
probabilities. Schroedinger (1926b) has extensively quoted 
HP ”in its old, naive form, not in the rigorous Kirchhoff 
form”, ie, in the same meaning that was understood by 
Feynman. As its expression he has seen the Hamilton-
Jacobi equation – an equation of first order in time. The 
representation of HP proposed in this paper unifies the 
description of propagation processes modelled by 
parabolic and hyperbolic differential equations. It is the 
same one for geometrical and for wave optics; the former 
being a limit case, but without ad-hoc assumptions. 

The mathematical formulation of HP in form of the 
Chapman-Kolmogorov equation (23) implies the following 
important conclusions. 
(i) Huygens’ construction can be applied to spreading 
wave fronts as well. 
(ii) Wave propagation is a Markov process (speech 
recognition bases on this fact). 
(iii) HP in that sense holds true for Dirac and similar 
quantum fields as well as for diffusion processes. 

The thesis of section 10 are deliberately formulated in 
such a general manner, that they apply, among others, also 
to the cases of spatial anisotropy (birefringence, Huygens 
1690), isotropy in the sense of the (local) line element 
(Schroedinger 1926a,b), nonlinear and fluctuating 
propagation conditions (Vanneste et al. 1992, Enders 
1993), audio-holography (Illenyi & Jessel 1991), and the 
states in electrical power systems (Vasin 1990). HP needs 
no correction as proposed by Miller (1991), and the 
difficulties discussed by Johns (1974) are lifted as well. 
The mathematical representation of HP by means of 
propagators and the Chapman-Kolmogorov equation 
throws also new light upon the relation between the 
fractional Fourier transformation and wave propagation 
and suggests further generalizations and applications in 
this field. 

Schwartz (1987) wrote, Physically this [HP] makes no 
sense at all. Light does not emit light; only accelerating 
charges emit light.” Indeed, not the wavefront itself 
irradiates the secondary wavelets, but the matter it excites 
(including the so-called vacuum exhibiting finite values ε0 
and µ0) does so. Since HP is not concerned with the 
mechanisms of excitation and re-irradiation, the GF and, 
thus, the Chapman-Kolmogorov equation cope with this 
physical point. 

The following text resembles Feynman’s (1948) 
original statement and fosters the view on HP presented in 
this contribution. ”Huygens principle follows formally 
from the fundamental postulate of quantum 
electrodynamics – that wavefunctions of every object 
propagate over any and all allowed (unobstructed) paths 
from the source to the given point. It is then the result of 
interference (addition) of all path integrals that defines the 
amplitude and phase of the wavefunction of the object at 
this given point, and thus defines the probability of finding 
the object (say, a photon) at this point. Not only light 
quanta (photons), but electrons, neutrons, protons, atoms, 
molecules, and all other objects obey this simple 

principle.” (http://en.wikipedia.org/wiki/Huygens’ 
principle, Feb. 12, 2008). 

Difference equations representing a discrete HP are 
directly suited for computing all propagation processes 
that can be modelled through explicit differential 
equations. This should enable the simultaneous and self-
consistent computation of interacting fields of different 
type, eg, heat diffusion and electromagnetic waves in 
lasers (Enders 1992), in microwave ovens or in lenses and 
mirrors for high-power beams. Within explicit schemes, 
self-consistency can be achieved at every (time) step, 
whereby convergency is considerably accelerated. 

One of such numerical algorithms is the Transmission-
line Matrix Modeling Method (TLM), an explicit finite-
difference scheme describing travelling voltage pulses on a 
mesh of lossless transmission lines and lumped resistors 
(Christopoulos 1995, de Cogan 1998, de Cogan et al 
2005). These difference equations trace a practically 
realizable physical process obeying HP, too. Due to that, a 
TLM routine exhibits excellent stability properties, which 
– among others – are exploited in commercial programm 
packages. The GF of the coupled one-step TLM equations 
is a proper Huygens propagator exhibiting the 
computational advantages described above (cf Enders & 
Wlodarczyk 1993). Johns’ (1987) symmetric condensed 
node for solving Maxwell’s equations in 3D obeys even 
Hadamard’s Minor Premise (Johns & Enders 1992). 

Delsanto and coworkers (1992) have stressed that a 
local interaction approach to simulation is favorized by 
three practical advantages: 
(i) extremalous speed due to immediate parallelizability; 
(ii) complex problems can be treated in a simple manner, 
since the local internodal connections are arbitrarily 
variable; 
(iii) the same code can be used for quite different 
problems, since the iterations (difference equations) are 
principally, ie, up the the values of the coefficients, 
identical. Such algorithms belong to the class of cellular 
automata (Wolfram 1986), where there is no limitation for 
the state set of the nodes. 

Thus, when ”the purpose of computing is insight, not 
numbers” (Hamming 1973), then an approach basing on a 
discrete HP is an ideal starting point for the development 
of codes, not at least due to its philosophy of modeling 
(Johns 1979, Toffioli 1984, Vichniac processes by means 
of clear division into elementary steps, which in turn 
display a large variety of behavior, may contribute to the 
unity of the treatment of propagation phenomena in 
different environmental conditions. 
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