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Abstract 
According to the correspondence principle, as formulated by Bohr, both in the old and the modern quantum theory, 

the classical limit should be recovered for large values of the quantum numbers in any quantum system. However, 

this classical limit of quantum theory is not so straightforward as in the interface of other generalizations of classical 

mechanics and other domains. In particular, relativistic kinematics and mechanics reduce to Newtonian equations by 

simple algebra in the case of bodies moving with small velocities compared to the speed of light in vacuum. In this 

paper we consider the correspondence limit to the two-body problem in gravitational physics, the limit in which both 

the principal and the angular quantum numbers, N, L are very large. In this limit, we compare with the classical 

elliptical orbits and we find that the macroscopic coherent quantum states correspond to the statistical average of 

every classical state compatible with conservation laws for the total energy and angular momentum. We also consider 

the perturbed Kepler problem with a central perturbation force proportional to the inverse of the cube of the distance 

to the central body. The exact solution for the quantum eigenstates shows that the first order perturbation to the 

energy eigenvalues are obtained classically as the temporal orbital average of the perturbation potential. 

 
Keywords: Rydberg states, Kepler problem, Orbital perturbations. 

 

Resumen 

 

De acuerdo con el principio de correspondencia, tal como fue formulada por Bohr, tanto en la vieja y en la moderna 

teoría cuántica, el límite clásico se debe recuperar para valores grandes de los números cuánticos en cualquier sistema 

cuántico. Sin embargo, este límite clásico de la teoría cuántica no es tan sencillo como en la interfaz de otras 

generalizaciones de la mecánica clásica y otros dominios. En particular, la cinemática relativista y la mecánica se 

reducen a las ecuaciones de Newton por álgebra simple, en el caso de los cuerpos que se mueven con velocidades 

pequeñas en comparación con la velocidad de la luz en el vacío. En este artículo se considera el límite de la 

correspondencia con el problema de los dos cuerpos de la física gravitacional, el límite en el que tanto el número 

cuántico principal como los números cuánticos angulares, N, L son muy grandes. En este límite, se compara con las 

órbitas elípticas clásicas y se encontró que los estados cuánticos coherentes macroscópicos corresponden al promedio 

estadístico de cada estado clásico compatible con las leyes de conservación de la energía total y el momento angular. 

También se considera que el problema de la perturbación de Kepler con una fuerza de perturbación central 

proporcional a la inversa del cubo de la distancia al cuerpo central. La solución exacta para los estados cuánticos 

propios muestra que la perturbación de primer orden a los valores propios de energía es obtenida clásicamente como 

la media orbital temporal de la potencial perturbación. 

 

Palabras clave: estados de Rydberg, problema de Kepler, perturbaciones orbitales. 
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I.INTRODUCTION  
 
The discovery of new phenomena beyond the domain of 
validity of physical theories usually requires the 
formulation of new theories encompassing both the 
classical applications of the former theory and the novel 
ones. In a purely empirical way the new theory must reduce 
to the original by producing the same predictions in the 
restricted domain in which the old theory has proven right 
for a long time. This commonly, but not necessarily, 

implies that, mathematically, these two different theories 
coincide in the smaller domain of the previous one. 

However, this not means that the novel theory is 
conceptually equivalent because, despite their formal 
correspondence, both theories could base their predictions 

on very different standpoints. This evolution of physical 
theory has taken place many times in the history of science. 

A well-known example is the case of special relativity 
and its reduction to classical mechanics in the limit of small 
velocities compared to the speed of light. In this limit, 
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Lorenz transformations become Galilean transformations 
and the total energy of a moving body reduce to the 
classical expression for the kinetic energy save for the rest 
energy term, the last one being a characteristic prediction of 
special relativity [1]. 

From a pedagogical point of view this is a very useful 
derivation because it allows us to gain confidence in the 
new theory by retrieving the well-known results of the 
previous theory subsumed into the most recent one. Hence, 
a correspondence principle appears in any scientific 
revolution or generalization between the modern theory and 
the previous one subsumed by it. The reasons for the 
existence of such a principle are clear: if the previous 
theory has been successful till the discovery of anomalies in 
another domain, it means that, in that domain at least, is 
formally correct. So, the new theory should reduce to it to 
avoid conflict with previous experiments. 

In cases of radical conceptual departure from the 
classical theory, such as it has occurred with quantum 
mechanics, the application and interpretation of the 
correspondence principle is not an intuitively simple task. 

Already for the old quantum theory and Bohr’s model 
of the atom, the correspondence with the classical limit was 
proposed to be achieved for large values of the quantum 
numbers [2]. After the emergence of the modern 
Schrödinger’s wave mechanics, and the equivalent abstract 
Heisenberg’s matrix mechanics, Bohr’s correspondence 
principle was adapted to them. However, the physical state 
in quantum mechanics is represented by a complex wave 
function interpreted in terms of the probability of finding 
the particle in a certain interval by means of Born’s rule [3]. 

This is very different from the concepts of Newtonian 
mechanics in terms of particles following clearly-defined 
trajectories in space. 

Another important step in the correspondence of 

quantum mechanics with classical physics was made by 

Ehrenfest in 1927 with the proof of the following theorem 

for a system with Hamiltonian H = p2/(2m) + V (x): 
 

.
d x

m p
dt

 
                               (1) 

 
( )

.
d p dV x

dt dx

 
                                  (2) 

 
 

Where <x> and <p> are the expectation values for the 

position and the momentum, respectively. This equation 

provides a correspondence with Newton’s second law with 

the classical force as the expectation value of the potential 

gradient. The classical limit is assumed nowadays to 

emerge as a consequence of quantum decoherence, a 

process in which the superposition states loss the coherence 

of their phase angles by the irreversible interaction with the 

environment [4]. Consequently, pure quantum states cannot 

be held in macroscopic systems because the thermal 

interactions with the environment make them to lose their 

coherence. Nevertheless, the demand of the quantum 

computing project requires that coherence in quantum states 

should be maintained as long as possible because quantum 

computations rely on the superposition properties of 

quantum states. As early as 1999, Nakamura et al. obtained 

1 µs coherence times for the two-level states of 

superconducting electrodes joined with Josephson junctions 

to a reservoir [5]. 
Another field where quantum mechanics has been 

applied to macroscopic systems is quantum cosmology. In 
1967, the so-called Wheeler-DeWitt equation was proposed 
in the context of canonical quantum gravity as a model for 
the wave function of the Universe as a whole [6]. So, 
macroscopic quantum states are interesting in themselves 
both as a practical tool with possible engineering 
applications (as in the case of quantum computing). Also 
from a fundamental point of view, the analysis of 
macroscopic quantum states also shed light on the 
conceptual problems of quantum mechanics as a 
replacement of classical deterministic mechanics. 

The study of the classical limit of the hydrogen atom 
was performed by Brown in 1973, who recovered the 
classical circular orbits for large n [7]. Experimental work 
on Rydberg wave-packets was even performed in the 
nineties of the past century and many similarities with 
classical behaviour was found [8, 9]. 

In this paper we revisit the two-body problem (pure 

Kepler problem and a problem with perturbations) with the 

tools of Schrödinger’s wave mechanics and we discuss their 

interpretation in connection with classical physics. This 

example could be of real pedagogical interest for students 

because it covers subjects ranging from classical and 

quantum mechanics and the theory of perturbations and 

goes beyond the hackneyed quantum harmonic oscillator 

used in most texts. 

The paper is organized as follows: In Section 2 we 

discuss the hydrogen atom solution of Schrödinger’s 

equation in the limit of large principal, n, and angular, l, 

quantum numbers. We show that circular orbits correspond 

to l = n − 1. For l = n/2 we discuss the statistical average 

correspondence among the available elliptical orbits, for 

fixed energy and angular momentum, and the quantum 

eigenstate. In Section 3 we analyze the effect of a 

perturbing potential δV (r) = −α/(2r2), where δV (r) is the 

perturbation for unit mass and α is a small constant. The 

relation among the solution of Schrödinger’s equation for 

the eigenvalues of the energy and the classical theory of 

perturbations is also discussed. Finally, some remarks and 

conclusions are given in Section 4. 

 

 
II. THE QUANTUM KEPLER’S PROBLEM 
 

We consider the solution of Schrödinger’s equation for the 

gravitational potential V (r) = −G M m/r, where M is the 

mass of the central body, m is the mass of the orbiting body 

(assuming M >> m) and r is the distance among the bodies 

centers modelled as point-like or spherical. Mathematically 

speaking, the gravitational and electrostatic potential are the 

same. For this reason in Bohr and Sommerfeld models of 

the old quantum theory the hydrogen atom was described as 

a miniature solar system supplemented with quantization 

rules. In this paper we pursue the inverse analogy to 

describe a solar system as a macroscopic atom. Energy 
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eigenvalues of the two-body problem depend only on the 

principal quantum number, n, while the angular momentum 

eigenvalue is proportional to the angular quantum number, l: 

 

2

02
n

GMm
E

n a
  .                                (3) 

 

J l .                                      (4)   

 

Where a0 is the Bohr’s radius of the system given by: 

 
2

0 2
a

GMm
 .                               (5) 

 

If we consider the values of the masses for the Sun, M = 

1.989 × 1030 kg, and the Earth, m = 5.972 × 1024, we get 

from Eq. (5) that the Bohr radius is a0 = 9.27 × 10−137 m, 

many orders of magnitude smaller than the Planck length. 

As the mean distance of the orbiting particle to the 

force center is given by rn = n2a0. If we take rn as the mean 

Earth-Sun distance, i. e., r = 149.6 × 106 km we find n ≈ 4 × 

1073 for the principal quantum number. These values are 

extremely large but, as we will soon see, even for n = 100 

the essential features of the classical limit are unveiled. 

Another important relation for the orbital eccentricity, 

ε, is obtained from the classical relation of ε with the total 

energy and angular momentum of the planet [10] as 

follows: 
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Where we have used Eq. (3). Notice that Eq. (6) is the same 

result found in Sommerfeld’s model of the atom. The 

eigenfunctions are derived exactly for the hydrogen’s atom 

[11, 12] and they are usually expressed as the product of a 

radial part, Rn,l(r) and an angular part, Fn,l,m(θ, φ), i. e., Ψn,l,m 

= Rn,l(r)Fl,m(θ, φ) with: 
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Where ( )q

pL x are the Laguerre polynomials of order p, q 

[13] and the normalization coefficients are given by: 
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The normalization condition for the radial function is: 

 

2

,

0

( ) 1n lR r r dr



 .                                 (9) 

 

The angular part is expressed in terms of the spherical 

harmonics for any central potential [11]: 
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Where the last identity expresses the relation of the 
spherical harmonics with the associated Legendre 
polynomials, Pl

p(cos θ), we have used p instead of m for the 
magnetic quantum number to avoid confusion with the 
mass. According to Born’s principle, the modulus |Yl

p(θ, 
φ)|2 is proportional to the probability density for finding the 
particle in the solid angular interval dθdφ. As we are 
concerned with states analogous to macroscopic orbits we 
will restrict to the case with n, l large and a magnetic 
quantum number p = l. In Fig. 1 we show a plot of the 
angular factor of the probability distribution for n = l = p = 
20. The distance to the origin is a measure of the 
probability density in the direction θ, φ where θ is the polar 
angle and φ is the azimuth. We notice that even for these 
relatively small values of the quantum numbers the 
confinement of the orbit to the plane perpendicular to the z 
axis is quite apparent. The reason for that confinement is 
clear from the identity: 
 

,

(2 1)(2 )!
( , ) sin .

4

l

l l

l l
Y   




                    (11) 

 
Which implies that the angular factor in the probability 
function decays very fast except for θ = π/2, i. e., for the 
plane perpendicular to the z axis. So, we have shown that 
for l = p large the quantum state is restricted to a plane. In 
the following we will analyze the radial contribution to the 
probability function in order to elucidate the relation with 
classical orbits. 
 
 

A. Case l=n-1 and circular orbits 

 

This case has been recently studied by Keeports [14] but we 

describe it here in some detail for completeness.  

We consider the radial probability distribution, |rRnl(r)|2, 

in the case of maximum angular quantum number, l = n − 1  

1. This correspond to the probability of finding the particle 

in the interval r, r + dr. Moreover, as discussed before we 

know that this probability will only be non-negligible in the 

plane θ = π/2 as occurs in classical physics. From Eq. (7) 

and the properties of Laguerre polynomials [15] we find: 

 

2 2 2 /

, 1 2
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n n
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   

 


                 (12) 

 
Where ρ = r/a0 is the distance to the origin measured by 
taking Bohr’s radius as our unit. The average distance to the 
origin is then given by: 
 

3

, 1

0

( ) ( 1/ 2)n nR d n n   


    .        (13) 

 

And, similarly, the variance is found to be  
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.

2 4

n
n           

 

And consequently,  

 

/ 1/ 2 1.n     

 

And the radial probability distribution becomes sharper and 

sharper as n increases.  

In Figure 2 a density plot of 2 2

, ( )n lR   for n=50 and 

l=49 shows this behavior. 

So, the quantum state becomes a circular orbit. 

 
2 2 2

, 1 0( ) ( )n nr R r r n a   ,  as n  ∞.            (14) 

 

Born’s interpretation of the wave function indicates that the 

probability of finding the particle is uniform along the 

circular path. Classically we can interpret this result as a 

consequence of the uniform velocity with which the particle 

traverses its orbit. We can obtain the correspondent 

classical velocity from the quantum solution from the 

probability flux [11]: 

 

*Imj
m

   
 

 .                       (15)   

 

Where Im denotes the imaginary part. Consequently, the 

only contribution to Eq. (15) comes from the imaginary 

term in the definition of the spherical harmonic as given in 

Eq. (10) for p=l. But, ( , , ) / ( , , )n l l il n l l     and we 

have:    
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0
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l l
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m r mn a
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Where we have used Eq. (13) and we have also taken into 

account that θ = π/2 for non-negligible values of the 

distribution function. φ is the unit azimuthal vector in the 

plane θ = π/2, i. e., this is a unit vector tangential to circular 

orbits. A velocity vector can now be obtained as the 

quotient of the probability flux and the probability density 

as follows: 

 

* 2

0

j l GM
v

mn a a
 


   .                (17) 

 

Notice that the last step is deduced from Eq. (5) and the 

classical angular momentum per unit mass for the circular 

orbit given by /l m GMa . 

So, we finally deduce the velocity for the particle which 

traverses the classical circular orbit. In this interpretation, 

the quantum probability corresponds to the probability of 

finding, at a random time, the particle at a given point of 

the orbit. This temporal interpretation of quantum states in 

the limit of large quantum numbers is usually applied in the 

case of the harmonic oscillator [12]. In the next section, we 

will show that we can understand elliptical orbits in the 

same way. 

 
FIGURE 1. A slice of the three-dimensional plot for the square 

modulus of the spherical harmonic with l = p = 20. The distance of 

the surface to the origin is proportional to the probability density 

in that particular direction. The height of the parallelepiped is a ten 

per cent of the other two sides. 

 

 
FIGURE 2. Density plot for the probability density with n=50, 

l=p=49. 

 

B. Case l < n-1 and elliptical orbits 

 

In this case we should find a relationship with classical 

elliptical orbits. In Fig. 3 we have plotted the probability 
2 2

,( ) ( )n lP r r R r for finding the particle between two close 

spheres of radii r and r+d r in the case n=50, l=n/2. For 

these values, the corresponding eccentricity is 3 / 2  . 

The classical orbits are given by [16]: 

 
2(1 )

1 cos

a
r



 





.                               (18) 

 

A classical interpretation of the asymptotic quantum state 

for large n, and l < n − 1 is obtained by performing a 

temporal average over all possible elliptic orbits compatible 

with conservation laws, i. e., all orbits with the same 

angular momentum and total energy. In Fig. 4 we plot ten 

orbits with eccentricity ε= 0.8 whose semi-major axes are 

displaced an angle π/5 with respect to those of their 

neighbouring orbits. 



Quantum Mechanics of the Solar System 

Lat. Am. J. Phys. Educ. Vol. 8, No. 2, June 2014 259 http://www.lajpe.org 

 

 
FIGURE 3. Radial probability density (n=50, l=25) for finding 

the orbiting particle. 

 

 

We see from Fig. 4 that every point between the circles of 
radii between the perihelion, rmin = a(1 − ε), and the 

aphelion, rmax = a(1 + ε), belongs to the intersection of two 
rotated elliptical orbits. That point corresponds to opposite 
orbital angles or true anomalies: θ and −θ. So, the 
probability of finding the particle at a randomly chosen 

instant t should be proportional to the time spent by the 
particle in the angular interval θ, θ + dθ: 

 

2( )
( )

d d
P d r

T TJ

 
 

 
  .                     (19) 

 

Where we have taken into account the relation of the 

angular velocity with the angular momentum (per unit 

mass) as given by Kepler’s second law 2( ) /J r   . We 

should also consider the expression of the angular 

momentum (per unit mass) in terms of the orbital geometric 

parameters, i. e., the semi-major axis and the orbital 

eccentricity [16]: 

 

2(1 )J a GM  .                         (20) 

 

M being the mass of the central body, as usual. Kepler’s 

third law is also given as: 

 
3/2 1/22T a  .                           (21) 

 

By substitution of Eqs. (18), (20) and (21) into Eq. (19) we 

find:  
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It is more convenient for comparison with the quantum 

probability distribution to perform a variable change from θ 

to r. So, we use Eq. (18) again to find: 
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Where ρ=r/a and the prefactor has been chosen in order to 
P(r) to be normalized in the interval 0 ≤ r < ∞. To compare 
with the quantum case we use n=1000, l=500 and the scaled 
radius ρ = r/(n2a0), i. e., in parallel with the circular orbit 
studied in the previous section the semi-major axis of the 
orbit correspond to a = n2a0. To smooth the oscillations of 
the quantum probability distribution we perform an average 
over uniform intervals of width 0.1. The classical orbital 
average probability in Eq. (23) is compared with the 
averaged quantum result from Eq. (7) in Fig. 5. Notice that 
the orbital eccentricity of the classical orbits is given by Eq. 
6 as 3 / 2   for l=n/2. The excluded classical regions are 
given by an inner circle whose radius is the perihelion 
distance to the central body, 

min 1 0.134   , while the 

maximum distance to the central body or aphelion is 

max 1 1.866   . We have shown that the probability 

distribution for a stationary quantum state of the hydrogen 
atom in the correspondence limit (n,l >>1) can be 
interpreted as a temporal average over all possible 
trajectories sharing the same energy and angular 
momentum and with an eccentricity given by Eq. (6). 

In parallel with the circular orbit case, we can calculate 
the quantum probability flux from Eq. (15) and we obtain 
the result: 
 

*J
j

r
  .                       (24) 

 
Where J is the angular momentum per unit mass. This can 
be interpreted in terms of a transverse velocity:  
 

*

j J
v

r



  .                            (25) 

 

This is a consequence of the orbital average over all 

elliptical orbits with the same energy and angular 

momentum. As displayed in Fig. 4, every point belongs to 

two elliptical orbits in such a way that the average of the 

radial motion is zero and only the transverse velocity 

appears after the average over orbits has been performed. 
 

 
 

FIGURE 4. A set of ten elliptical orbits (ε=0.8) sharing the same 

plane and uniformly rotated. 
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FIGURE 5. The classical probability distribution for elliptical 

orbits (solid line) versus the smoothed quantum prediction for 

n=1000, l=500 (circles). Dashed areas correspond to the excluded 

classical regions. 

 

 

III. CORRESPONDENCE FOR CLASSICAL 

ORBIT PERTUBATIONS  
 
In this section, we consider a radial perturbation of the 
classical Newtonian potential and its effect on quantum 
stationary states in the correspondence limit. As the 
perturbation theory in quantum mechanics cannot be 
applied to very large values of the quantum numbers we 
will propose a problem with exact solution. We consider 
the Kepler problem with a 1/r3 perturbation force term 
corresponding to the potential: 
 

2
( )

2

GMm m
V r

r r


   .                           (26) 

 

Where α is a small quantity. The radial part of the wave-

function, u(r)=r R(r), verifies the following equation: 
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It is usually convenient to rewrite this radial equation in 

terms of non-dimensional parameters. We define a non-

dimensional distance to the origin, ρ, and a parameter, λ, as 

follows: 
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8mE
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This way we find that Eq. (27) can be casted into non-

dimensional form as: 
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Where 2 2/m  . Notice that Eq. (30) has the same 

structure that the radial equation for the standard hydrogen 

atom problem. The only difference arising from the extra 

term ν in the denominator of the effective angular 

momentum potential. To solve this equation the standard 

approach resorts to the study of its behaviour in the limits 

of large and small ρ. For large ρ the terms inversely 

proportional to ρ and ρ2 are negligible and we have 
/2( )u e   . For small values of ρ the ρ-2 term dominates 

the behaviour and an algebraic solution ( ) ku    is 

suggested. By direct substitution we find: 

 

( 1) ( 1)k k l l     .                         (31) 

 

Whose solution for k is: 
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Where the approximation is obtained on the assumption 

that ν << 1. The standard change for the radial equation is 

then, /2( ) ( )ku f e     and ( )f  satisfies the second-

order differential equation: 
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Whose solution is obtained by series expansion: 
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



 .                             (34) 

 

By inserting Eq. (34) into Eq. (33) we deduce that the 

coefficients ja , 0,1,2,...j   are obtained through the 

following recurrence relation: 

 

1
( 1)( 2 )

j

k j
a

j j k




 


 
 ,    j           (35) 

 

It is well-known that ja should be zero for some j because 

otherwise the series in Eq. (35) describes the exponential 

( )f e  and the resulting eigenfunction /2( ) ku e  is 

not normalizable. If 0ja   for some j  the series in ( )f   

is finite and we have a polynomial solution. This condition 

will be written as: 

 

( 1)k n l     .                         (36) 
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This condition implies that Eq. (33) is verified by the 

associated Laguerre polynomials 2 1

1( ) ( )k

n lf L 

  . From the 

definition of   in Eq. (28) we find the perturbed energy 

levels: 

 
2 3

, 2 2

( ) 1

2
n l

GM m
E


  .                          (37) 

 
Notice that in the unperturbed case , 0  , n   and we 

recover Bohr’s energy levels. The perturbed potential in Eq. 

(26) breaks angular momentum degeneracy and the energy 

levels now depend also on l . For small perturbations 

1 we can approximate this expression to find the ratio 

on the energy levels perturbations and Bohr levels as 

follows: 

 

, 2( )
n l

n

E
O

E nl





   .                      (38) 

 

A. Classical energy perturbation 

 

Now we consider the effect of a classical perturbation given 

by the extra potential 2( ) / (2 )V r m r   on the energy of 

Kepler’s elliptical orbits / (2 )E GMm a  . The time 

average of the perturbing potential in the unperturbed 

Keplerian orbit is given by: 

 

202

T dt
V

T r


   .                         (39) 

 

Where T is the orbital period. This integral can be more 

readily calculated if we use the orbital equation and the 

equation of time in terms of the eccentric anomaly [15]: 

 

(1 cos )r a     ,                         (40) 

 

2
(1 cos )

dt
d

T


    .                    (41) 

 

From Eqs. (39)-(41) we can perform the time integral over 

the eccentric anomaly: 

 
2

2 2 204 1 cos 2 1

m d m
V

a a

  


   
  

 
 .   (42) 

 
Where the semi-major axis is given by: 

 
2

2 2

0 2
a n a n

GMm
  .                        (43) 

 

And we have used the expression in Eq. (5) for the Bohr’s 

radius, 
0a , of the gravitational system. From Eqs. (6), (42) 

and (43) we can calculate the quotient among the 

perturbation and the energy of the original unperturbed 

orbit as follows: 

 
2

221

V m

E nl nlGMa

   



 
     



.        (44) 

 

Which coincides with the quantum result in Eq. (38) to first 

order in ν. 

 

 

IV. CONCLUSIONS 
 

Bohr’s correspondence principle has largely influenced the 

development of quantum mechanics and its interpretation 

[17]. Even on the early quantum theory, Bohr was already 

interested in explaining the connection of the novel 

quantum conditions from a classical point of view. It was 

shown that the angular momentum quantization L n was 

compatible with the emission and absorption of photons 

with a frequency given as an integer multiple of 1/T, T 

being the orbital period for n large. This suggested a 

promising avenue to recover a result of classical 

electrodynamics, i. e., a charged orbiting body radiates with 

frequencies in multiples of the orbiting frequency. This 

frequency interpretation of the correspondence principle 

appeared very early in the development of the theory. In 

another interpretation, the intensity of the classical radiation 

was related to quantum emission probabilities. A third 

interpretation stated that every allowed transition by the 

quantum selection rules corresponds to one harmonic 

component of the classical motion [18]. 

In many texts of quantum physics, however, the 

correspondence principle takes a broader perspective as the 

convergence of the classical and quantum predictions in the 

case of large quantum states, i. e., those widely spread in 

space and corresponding to bodies of large mass. However, 

scarce dedication to this issue is given in textbooks, despite 

its pedagogical and conceptual interest and recent 

experimental developments on this subject [8, 9]. The one-

dimensional harmonic oscillator is usually the only system 

studied for large quantum numbers. 

In this paper we have analyzed the most important 

exactly solvable problem of Schrödinger’s quantum 

mechanics, i.e., the hydrogen atom, a single particle 

orbiting towards a center of mass attracted by Coulomb 

force. In the classical limit this problem should correspond 

to a Solar system problem and we expect to recover the 

characteristic orbital parameters not present in Born’s 

probability density for small values of the quantum 

numbers. We have shown how for large values of the 

angular quantum number, l, the angular factor in Born’s 

probability density restricts the state to a plane in agreement 

with the classical property of planar motion in Kepler’s 

problem. Moreover, for large n the radial part is confined to 

a very precise radius and, consequently, the quantum state 

has a very narrow toroidal shape in correspondence with 

classical circular orbits. Classical orbital velocity can also 

be deduced as the quotient of the quantum flux and Born’s 
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probability density. 

A similar approach to the elliptical orbits lead to the 

conclusion that the quantum state in the macroscopic limit 

is the result of a time average over all orbits sharing the 

same invariants: energy and angular momentum. The 

quantum state resembles a flattened disk with an inner hole 

because the classical region r < a (1 − ε) becomes forbidden 

as the particle cannot be find at distances from the center 

smaller than the perihelion. 

Finally, we have shown that perturbations in the 

eigenvalue of the energy can be computed as time orbital 

averages of the perturbation potential over the unperturbed 

orbit of the Newtonian potential. We find that the 

correspondence with quantum eigenstates in the Kepler’s 

problem is achieved as an average over all possible 

classical orbits with the same energy and angular 

momentum vector. The quantum probability density 

coincides then with the probability to find the particle in a 

given position at a randomly chosen instant of time. We 

show that in Quantum Mechanics all possible 

configurations have the same status of reality and coexist to 

define the stationary states. 

An interesting extension of this work would be the 

understanding of macroscopic quantum states in a classical 

gravitational field in General Relativity in order to disclose 

the correspondence principle for quantum fields in classical 

curved spacetime. Further work along this line is being 

carried out. 
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