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Abstract 
A general equation is derived for the point along a descending curved track that a particle (such as a marble or model 

car) loses contact with the surface, in the absence of dissipation of mechanical energy. The object is assumed to start 

from rest at a point on the curve of zero slope. The launch speed and angle are calculated for the examples of a circular 

and a log-secant curve. The equation shows that a particle can never launch off a parabolic track, because it cannot 

attain the speed of a freefalling object skimming along the surface of such a track. 
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Resumen 
Una ecuación general se deriva para un punto a lo largo de una trayectoria curvada descendente, de una partícula (tal 

como una bolita o un carrito) que pierde el contacto con la superficie, en ausencia de disipación de la energía 

mecánica. Se supone que el objeto empieza desde el reposo hasta un punto en que la pendiente de la curva es cero. La 

velocidad de lanzamiento y el ángulo se calculan para los ejemplos de una curva circular y una curva log-secante. La 

ecuación muestra que una partícula nunca puede lanzarse fuera de una trayectoria parabólica, porque no puede alcanzar 

la velocidad de un objeto en caída libre que coincide superficialmente con una trayectoria de este tipo.  
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I. INTRODUCTION 

 
A standard textbook problem [1] consists in finding the point 

at which a particle slides off a hemispherical surface (such as 

a giant snowball) starting from rest at the top, ignoring 

friction and air drag. Similarly, for any given curved ramp, 

what are the coordinates (if any) at which contact with the 

surface is lost? What then is the particle’s launch velocity 

(i.e., speed and direction)? 

For simplicity, assume that the particle always starts from 

rest at a point on the curve that has zero slope, so that a 

slight nudge is needed to get it sliding down the ramp.  

Define that starting point to be the origin (0,0) . Restrict 

attention to plane curves, with +x in the direction of initial 

motion and +y in the vertically downward direction of the 

local gravitational field having magnitude g.  

The particle loses contact with the track when it has 

speed 0 and when the slope of the ramp makes angle 0 

measured clockwise from the +x axis in Fig. 1 (i.e., toward 

the direction of the +y axis, in accord with the usual 

convention for angle in plane polar coordinates). 

 

 

II. EQUATION FOR THE POINT AT WHICH 

THE PARTICLE LOSES CONTACT WITH THE 

SURFACE 

 
A free-body diagram is sketched in Fig. 1 for a particle of 

mass m that is sliding along a ramp in the absence of friction 

and air resistance. There are two forces acting on the 

particle: the normal force N that the ramp exerts 

perpendicularly to itself and the downward gravitational 

force mg.  

The acceleration of the particle has two orthogonal 

components: the centripetal acceleration 2

c /a r  

perpendicular to the track where  is the speed of the particle 

at the instant indicated and r is the radius of curvature of the 

track at that point, and the tangential acceleration 

t /a d dt  parallel to the track that measures the increase 

in speed of the particle with the passing of time t. 

The particle loses contact with the surface when the 

normal force in Fig. 1 is zero. In that case, the component of 

Newton’s second law perpendicular to the track becomes: 

 
2

c c cosF ma mg m
r


   ,                (1) 
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where  is the angle the track makes relative to the 

horizontal, assumed to be restricted to the range 

/ 2 / 2      (thereby excluding internal loop-the-

loops). Suppose the normal force first becomes zero when 

the particle is a vertical distance y below the origin. From 

conservation of mechanical energy, the speed  of the 

particle at that instant is: 

 
21

2
2m mgy gy    .                  (2) 

 

The radius of curvature [2] can be mathematically calculated 

for a plane curve as: 

 
2 3/2(1 )y

r
y





,                               (3) 

 

where the primes indicate derivatives with respect to x. (For 

example, a straight track has 0y   so that r   and 

hence c 0a  . A particle thus never loses contact with a 

straight section of track inclined at less than the vertical.) 

Finally, because the slope of a curve can be written as: 

tany   , it follows that: 

 

2 2

1 1
cos

1 tan 1 y




 
 

.                   (4) 

 

(The positive square root is appropriate for the range of 

angles assumed above.) Substituting Eqs. (2) through (4) into 

(1), one finds that the particle loses contact with the track at 

a point that satisfies the equation: 

 
21

2

y
y

y





.                                 (5) 

 

A similar equation has been obtained to describe the motion 

of a bead sliding frictionlessly along a cycloidal wire [3]. 
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FIGURE 1. A particle sliding frictionlessly along a plane curve 

( )y x . The particle started with negligible initial speed at the origin 

(where the slope of the curve is zero). 

 

III. APPLICATION TO THREE PARTICULAR 

TRACK SHAPES 

 
As a check on Eq. (5), first apply it to a semicircular track of 

radius R whose top point is at the origin, 

 

2 2( )y x R R x   .                         (6) 

 

(Substituting this expression into Eq. (3) gives r R  as 

expected). Inserting Eq. (6) into (5) and simplifying, one 

correctly finds the standard result [1] that the particle loses 

contact with the track at a value of y given by 0 / 3y R  

(i.e., at a height above the equator equal to two-thirds of the 

radius). 

The corresponding value of x at that point is 

0 5 / 3x R  and the launch angle is: 

 

1
0tan tan 1.25 48

dy

dx
        ,       (7) 

 

which is also the polar spherical angle (measured clockwise 

from the top of the track) at which the particle flies off. The 

launch speed is: 

 

0
2

3

gR
  ,                                   (8) 

 

according to Equation (2). 

As a second application, consider a parabolic track whose 

vertex is at the origin 2y kx , with 0k   so that the 

particle can slide down it. Substituting that function into Eq. 

(5), one finds that there is no solution for finite k. In other 

words, a particle can never lose contact with an inverted 

parabolic track if it starts at the vertex at rest.  

The reason for this behavior is that a particle in freefall 

would skim along the surface of the curve if it were 

projected horizontally from the origin with an initial speed of 

/ 2g k . 

Since our particle instead starts from rest, its speed at any 

given point along the curve will always be lower than that of 

the freefalling particle at the same point, and hence our 

particle will never be able to make a transition to freefall. 

The preceding two examples began with tracks of definite 

shapes. Another approach is to look for general solutions of 

Equation (5). However, that equation only specifies a 

relationship between the three values of y, y , and y  at the 

launch point. It does not constrain their values at other points 

along the curve. To make progress, one or more additional 

conditions must be imposed. For instance, we can fix the 

value of y in Eq. (5), say to 0 0y  , and then solve the 

differential equation. This constraint requires a specific 

proportionality to hold between the values of y  and y  at 

all points along the curve, namely: 
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2
01 2

dy
y y

dx


  .                             (9) 

 

Separating and integrating, one obtains: 

 

1
0

0

2 tan ( ) tan
2

dy x
x y y

dx y

  
    

 
,         (10) 

 

where the constant of integration is zero to ensure (0) 0y  . 

Separate and integrate again to get: 

 

0
0

( ) 2 ln sec
2

x
y x y

y

  
   

   

,                  (11) 

 

after requiring the curve to pass through the origin. Defining 

the numerical value: 

 

 1 1/22cos 1.838A e   ,                 (12) 

 

the particle loses contact with this log-secant curve at 

coordinates 0 0( , )Ay y . The launch velocity is 0 02gy   

at an angle of: 

 

 1 1/2
0tan cos 53

dy
e

dx
        .      (13) 

 

One may wonder whether a similar method could be used to 

find track shapes for the following constraints: 

(i) Fix a positive value of y  in Eq. (5); 

(ii) Fix a positive value of y  in Eq. (5); or 

(iii) Require Eq. (5) to hold at all values along the curve, not 

just at the launch point. 

The reader is invited to verify that in all three of these 

cases, the solution to the resulting differential equation 

(obtained using the identity /y y dy dy    when helpful) 

cannot satisfy the two boundary conditions (0) 0y   and 

(0) 0y  . 

It appears to be serendipitous that we were able to find a 

satisfactory solution when we fixed a value of y in Eq. (5). 

 

 

IV. CLOSING COMMENTS 

 
Two examples of launch curves that have zero slope at the 

origin are a semicircular track and a log-secant ramp. For 

both of them, the launch speed can be varied by adjusting the 

overall scale size of the track. However, the launch angle is 

fixed regardless of this chosen scaling see Eqs. (7) and (13). 

A challenging topic for further investigation is to find a 

general equation for a smoothly varying function (that starts 

with zero slope at the origin) that launches a particle with 

any specific velocity (not just speed) of interest. Is the 

solution to that problem unique? If not, what additional 

constraints have to be placed on the track shape (or on the 

conditions of launch) so that one specific functional curve 

uniquely satisfies the constraints? 
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