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Abstract 
Approximate models for the temperature difference T as a function of the time t in the heating and cooling stages 

measured with the hot wire technique are reported. It is shown that considering up to the third term in the power series 

development of the exponential integral leads to a significantly greater approximation to the expression for T. The 

utility of the model for the heating stage is demonstrated by the adjustment to experimental results of magnesium 

oxide powder. Likewise, minimum values to be measured of the thermal diffusivity  are reported for the cases of a 

single needle and the dual probe and it is shown that  is smaller by two orders of magnitude for the probe of a needle 

than for the case of a dual probe, which gives greater amplitude to the application of this technique. Finally, the 

application of the model to the cooling stage shows that the model does not reliably reproduce the experimental points 

due to the importance at this stage of the effects of edges not considered in the development of the model. 
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Resumen 
Se reportan modelos aproximados para la diferencia de temperatura T en función del tiempo t en las etapas de 

calentamiento y enfriamiento medidos con la técnica del alambre caliente (hot wire). Se demuestra que el considerar 

hasta el tercer término en el desarrollo en serie de potencias de la integral exponencial conduce a una aproximación 

significativamente mayor a la expresión para T. Se demuestra la utilidad del modelo reportado para la etapa de 

calentamiento mediante el ajuste a resultados experimentales de óxido de magnesio en polvo. Asimismo, se reportan 

valores mínimos a medir de la difusividad térmica  para los casos de una sola aguja y la sonda dual y se demuestra 

que  es menor en dos órdenes de magnitud para la sonda de una aguja que para el caso de una sonda dual, lo cual da 

mayor amplitud a la aplicación de esta técnica. Finalmente, la aplicación del modelo a la etapa de enfriamiento muestra 

que el modelo no reproduce de forma confiable los puntos experimentales debido a la importancia en esta etapa de los 

efectos de bordes no considerados en el desarrollo del modelo.    
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I. INTRODUCTION 
 

Heat transfer is the area which describes the energy transport 

between material bodies due to a difference in temperature, 

and its development and applications are of fundamental 

importance in many branches of engineering since provides 

economical and efficient solutions for critical problems 

encountered in many advanced equipment. Among the 

parameters that determine the thermal behaviour of a 

material, the thermal diffusivity (), is especially important 

because it represents the rate of heat transfer into the media. 

Moreover, the thermal diffusivity is the ratio of the thermal 

conductivity k to the heat capacity cp ( = k/cp), hence, it 

measures the ability of a material to conduct thermal energy 

relative to its ability to store thermal energy. Materials of 

large  will respond quickly to changes in their thermal 

environment, whereas materials of small  will respond 

more sluggishly taking longer to reach a new equilibrium 

condition [1]. 
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The hot wire (HW) technique is an absolute, non-steady 

state and direct method, which is considered an effective 

procedure to determining the thermal diffusivity of a variety 

of materials, including ceramics, fluids, food and polymers 

[2, ]. The HW technique is based on the measurement of the 

temporal history of the temperature rise caused by a linear 

heat source (a hot wire) embedded in a test material. If the 

wire is heated by Joule´s effect passing a constant electrical 

current [3]. In the mathematical formulation, the hot wire is 

assumed an ideal, infinitely thin and long heat source, which 

is in an infinite surrounding material to be studied. 

This work report the mathematical approximation of the 

temperature difference as a function of the time in the 

heating and cooling stages measured with the hot wire 

technique, showing the percentage error in the 

approximation and the limits of application in the 

determination of thermal diffusivity. The application of the 

theoretical models in samples of magnesium oxide in powder 

is shown. 

 

 
II. HEATING STAGE 
 

In the hot wire technique, the thermal properties of the study 

material are determined by adjusting the data T vs t during 

the heating process, 0 < t < tc, According to [4]: 

 

                           (1) 
  

where q is the linear ratio of heat dissipation by the source 

(W/m), tc is the heating time and Ei is the integral exponential 

given by [5]: 

 

                   (2) 

 

 

 
FIGURE 1. Graph of the function E1 (top) and function Ei 

(bottom). 

By integrating the Taylor series of eu/u thge following serial 

representation of Ei(x) is obtained: 

 

         (3) 
 

where  = 0.57721566… is the Euler constant. 

 

From (2) y (3), it follows: 

 

 
(4) 

 

Figure 2 shows the curve of: 

 

y(x) = -  - lnx,  

 

y1(x) = -  - lnx+ x,   
 

y4(x) = -  - lnx+ x – (1/4)x2 + (1/18)x3 - (1/96)x4, 

 

By comparison a significant approximation of y1 to -Ei(-x) is 

observed for small values of x. 
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FIGURE 2. Graphs of -Ei(-x) and their power series 

approximations. 

 

 

Figure 3 shows the percentage error between the graphs of y4 

and y, as well as those of y4 and y1. It is observed that the 

percentage error for y(x) = -  - lnx is significantly higher 

than for y1(x) = -  - lnx+ x, so that, in the first case e% < 

1% for very small values of x (< 0.03), and in the second 

case e% < 1% for x < 0.22. This is a difference of one order 

of magnitude in x! 
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FIGURE 3. Graphs of percentage errors between -Ei(-x) and their 

approximations in series of powers. 

 

For x < 0.22: 

 
 

Taking the value of r = 6 mm (for the case of a dual probe), it 

follows, 

 
 

Thus, model y1 can be used with a convenient approximation 

for materials with α values as small as 41 mm2/s (0.41 cm2/s) 

when fit from t = 1s, or 2.73 mm2/s when fit from t = 15s. 

If it is consider r = 0.64mm (for tha case of a probe of a 

needle), it follows, 

 

 
 

Thus, model y1 s can be used with a convenient 

approximation for materials with α values as small as 0.46 

mm2/s (4.6 x10-3 cm2/s) when fit from t = 1s, or 0.031 mm2/s 

(0.31 x10-3 cm2/s) when fit from t = 15s. 

These results show that the minimum value of α 

decreases two orders of magnitude for the probe of a needle 

rather than the dual. 

Fort the approximation y1(x) for -Ei(-x), equation (1) takes 

the form: 

 

     (5) 

 

But, taking into account that, 

 

-ln(u) = ln(1/u) y  = ln(e). 

 

The following final expression is obtained for T in the 

heating stage: 

 

     (6) 

III. COOLING STAGE 
 

This step could also be useful in determining the thermal 

properties of a given material. During the cooling stage (tc < 

t) the behavior of T vs t is given by [1]: 

 

         (7) 

 

where tc is the heating time and Ei is the integral exponential 

given by Eq. (2). 

When considering the approximations of the previous 

section, it follows (tc < t): 

 

 
(8) 

 

Which, when ordering terms acquires the reduced form: 

 

        (9) 

 

For the temperature difference during the cooling stage. 

 

 
IV. EXPERIMENTAL RESULTS 
 

Figure 4 shows the experimental data of T vs t for the 

measurement of a powder sample of MgO with the probe of 

a needle. The continuous curve represents the best fit of the 

Eq. (6) to experimental data while maintaining k and α as 

fitting parameters. The result k = 0.2 W/mK and α = 0.135 

mm2/s corresponds to those reported in the literature. 
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FIGURE 4. Experimental results of T vs t for a simple of MgO 

powder by the hot wire technique of a needle. The continuous curve 

represents the best fit of Eq. (6) to the experimental data. 
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Figure 5 shows the graph of Eq. (6) in red and its 

comparison with the same but without the term x = r2/4αt. It 

is evident that not considering this term leads to significant 

deviations, especially to lower values of t, which can cause 

notable deviations when fitting to the experimental data. 

 

5 10 15 20 25 30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F7=F1(x)*F6(x)

T=q/4k (ln(4t/r
2
e

)+r

2
/4t)

T=q/4k (ln(4t/r
2
e

))

 F3

 F7

F3=F1(x)*F4(x)

F4=F6(x)+F5(x)

F6=ln(F2*t/exp())

F5=1/(F2*t)

F2=4/ r
2

F1=q /(4*pi*k)

MgO

q=0.61 W/m (1-needle)

k=0.2 W/mK

=0.135 mm
2
/s

=0.5772


T

t (s)  
FIGURE 5. Graphs of T vs t for the complete Eq. (6), in red, and 

without the term x = r2/4αt, blue curve. 

 

 

Figure 6 shows the best fit of Eq. (6), without the term x = 

r2/4αt, for the same experimental data of the Fig. 4, while 

maintaining k and α as fitting parameters. The result k = 0.22 

W/mK and α = 0.187 mm2/s present percentage errors of 10% 

y 38.5%, respectively, when compared to those obtained 

with complete Eq. (6). This shows a poor fit. 
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FIGURE 6. Fit of Eq (6) to the experimental data obtained 

for the sample of MgO powder, without the term x = r2/4αt. 

 

 

On the other hand, in the case of the cooling stage, figure (7) 

shows the attempt to fit the Eq. (9) to the experimental data 

of Fig. 4. There is a poor fit of the model of Eq. (9), 

suggesting a cooling faster than the experimental data show. 
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FIGURE 7. Fit of Eq. (9) to the experimental data of MgO powder 

during the cooling stage. 

 

 

During the heating process, the model reproduces the 

behavior of the experimental data because in the first 

seconds the heat propagates from the source radially 

outwards. The interface, between the sample and the external 

medium, does not present any alteration to the propagation 

of heat. As the heat reaches the interface it no longer 

propagates with the same speed and there is an energy 

accumulation effect that is reproduced in the experimental 

data in a higher value of T in the cooling process (even 

from the end of the process of heating) which is increased 

with t. It is worth mentioning that, the model developed 

suppose an infinite medium in which the heat should be 

propagated without obstacle. 

 

 

VI. CONCLUSIONS  
 

The mathematical approximation of the temperature 

difference as a function of the time in the heating and 

cooling stages measured with the hot wire technique it was 

presented. It showed the percentage error in the 

approximation and the limits of application in the 

determination of thermal diffusivity. In addition, the 

application of the theoretical models in samples of 

magnesium oxide in powder is demonstrated. 
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