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Abstract 
Unlike wave motion, where the propagation speed is well defined, in diffusive processes this quantity is not clearly 

established. In this way, any physicists can rapidly estimate the distance travelled by the light in vacuum or by the 

sound in air in a given time interval. However, few of them would be able to answer to the question of how far heat 

propagates (by conduction) inside a material in a given time. In this work, we use the concept of thermal diffusion 

length and we calculate it analytically for three situations of common life: when the sample surface of a material is put 

in contact with a thermal reservoir at a fixed temperature, when the surface is illuminated by a brief flash lighting and 

when the surface is illuminated by a continuous light beam. An easy to remember formula allows us to estimate the 

distance travelled by heat inside a material, which depends on its thermal diffusivity. 
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Resumen 
A diferencia del movimiento ondulatorio, donde la velocidad de propagación está bien definida, en los procesos de 

difusión esta cantidad no está claramente establecida. De esta manera, cualquier físico puede estimar rápidamente la 

distancia recorrida por la luz en el vacío o por el sonido en el aire en un intervalo de tiempo determinado. Sin embargo, 

pocos de ellos podrían responder a la pregunta de hasta qué punto se propaga el calor (por conducción) dentro de un 

material en un momento dado. En este trabajo, utilizamos el concepto de longitud de difusión térmica y lo calculamos 

analíticamente para tres situaciones de la vida común: cuando la superficie de la muestra de un material se pone en 

contacto con un depósito térmico a una temperatura fija, cuando la superficie se ilumina por un breve destello de luz y 

cuando la superficie está iluminada por un haz de luz continuo. Una fórmula fácil de recordar nos permite estimar la 

distancia recorrida por el calor dentro de un material, que depende de su difusividad térmica. 
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I. INTRODUCTION 
 

The question asked in the title of this article refers to heat 

propagation by conduction. Actually, heat propagates at the 

speed of light by radiation (electromagnetic waves) and in 

the case of convection it greatly depends on the thermal 

gradient and on the geometry and orientation of the sample 

[1]. The mechanism responsible for heat conduction in gases 

and liquids is the collisions between fast molecules and slow 

molecules that result in an energy transfer (heat) from hot 

regions to colder ones. In solids, thermal conduction 

involves the transport of the vibrational energy of the 

molecules across the crystal lattice of the solid (phonons). In 

the case of electrically conducting solids (metals and alloys) 

there is an additional mechanism due to free electrons, which 

behave in a similar manner as the molecules in a gas. In all 

cases, heat conduction is a diffusive and irreversible process 

of statistical nature.  

All physicists have an accurate idea on the propagation 

speed of waves, e.g. 3×108 m/s for electromagnetic waves in 

vacuum, 340 m/s for sound in air at room temperature and 

pressure, several km/s for acoustic waves in solid materials, 

etc. In this way, it is easy to calculate that it takes for the 

light a little more than eight minutes to get from the Sun to 

the Earth or that a storm is approximately two kilometres 

away from us if the time delay between lightning and 

thunder is six seconds. However, in diffusive processes, as is 

the case of heat conduction, the concept of propagation 

velocity is more elusive. In fact, few scientists would be able 

to answer apparently simple questions as: (1) how long does 

it take for the heat to reach the back of a wall 40 cm thick 

after the sun starts to light up its front face? or (2) what 

temperature will reach the back of that wall after being 

illuminated by the sun for an hour? Answering these and 

similar questions requires solving the heat diffusion 

equation, which for homogeneous and isotropic samples 

writes [2] 
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where T is temperature, D = K/(c) is the thermal diffusivity, 

K is the thermal conductivity  is the density and c is the 

specific heat. It has already been pointed out that this 

equation predicts an infinite speed for heat propagation [3]: a 

sudden temperature change at some point inside a material 

will be felt instantaneously at each point of the sample, 

although with exponentially small amplitudes at distant 

points. Therefore, answering question (1) is tricky, since, 

according to Eq. (1) the right answer is zero, which is 

unphysical and anyway, the temperature rise would be 

negligible. On the other hand, the answer to question (2) 

depends of the solar intensity, which depends on the latitude 

and the hour of the day, and on the reflectivity of the wall. It 

is clear that there are no simple answers to these deceptively 

simple questions. 

The aim of this paper is to help undergraduate students to 

answer the following question: how long does it take for the 

heat (by conduction) to reach a given distance inside a 

material? To do this, we use the concept of thermal diffusion 

length [4], which has been defined as the distance at which 

the temperature is reduced by a factor e with respect to the 

surface. This definition, which is similar to the exponential 

law of absorption of electromagnetic waves, has the 

advantage of being independent of the experimental 

conditions: power (energy) of the source, optical reflectivity, 

etc. 

We will find analytical expressions, using undergraduate 

physics and mathematics, for the temperature evolution of a 

material whose surface is stimulated in three ways: (a) The 

sample surface is put in contact with a thermal reservoir at a 

fixed temperature, (b) the sample surface is illuminated by a 

brief flash lighting and (c) the sample surface is illuminated 

by a continuous light beam. These cases are realistic 

realizations of practical experiments in heat conduction. As 

the thermal diffusion length is similar for the three cases it 

allows to estimate the depth penetration in different kinds of 

materials.  

This article is intended to serve the pedagogical purpose 

of using a puzzle question to attract the attention of physics 

students on heat propagation. It is addressed to 

undergraduate students in physics who have already passed 

through first courses of classical thermodynamics and who 

are familiar with the use of the Laplace transform to solve 

partial differential equations. 

 

 
II. THEORY 
 

Let us consider an opaque and semi-infinite sample whose 

free surface is the plane z = 0, as shown in Fig. 1. The 

sample is at room temperature and at t = 0 the sample surface 

is heated uniformly. We consider the three kinds of surface 

stimulation mentioned in the introduction. To obtain the time 

evolution of the temperature we have to solve the one 

dimensional diffusion equation 
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Along this article, T represents the temperature rise above 

the ambient. In transient problems it is useful to work in the 

Laplace space [5]. In this way, the Laplace transform of the 

diffusion equation is 
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where q2 = s/D and T  is the Laplace transform of the 

temperature. Equation (3) is a very well-known differential 

equation in physics, whose solution for a semi-infinite 

sample writes 

 

                                      ( , ) qzT z s Ae ,                       (4) 

 

where A is a constant to be obtained from the boundary 

conditions. In the following we will calculate the constant A 

for the three cases under study. 

 

 
 

FIGURE 1. Diagram of an opaque and semi-infinite sample whose 

surface (z = 0) is uniformly heated. 

 

 

A. Fixed surface temperature To 

 

In this case, the sample surface is put in contact with a 

thermal reservoir at temperature T = To above the ambient. 

The surface temperature is constant ( 0, ) oT z t T   for 

0t  , whose Laplace transform is ( 0, ) /oT z t T s  . By 

substituting equation (4) into this last expression, constant A 

is obtained and therefore the Laplace transform of the 

temperature at any point of the solid is obtained 

 

                           (z, ) qzoT
T s e

s
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whose inverse Laplace transform gives the time evolution of 

the solid temperature 

 

z 
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where erfc is the complementary error function. 

It is worth mentioning that Eq. (6) also governs the time 

evolution of the semi-infinite sample of Fig. 1 when it is put 

in perfect thermal contact with another semi-infinite sample 

(z < 0) made of the same material an initially at 2To above 

the ambient (see page 61 in Ref. [2]). 

 

B. Flash illumination 

 

In this case, the surface is illuminated by a brief flash pulse 

of negligible duration at t = 0 and energy density Qo (J/m2). 

If we neglect heat losses by convection and radiation at the 

sample surface the heat flux satisfies 
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whose Laplace transform is  
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where (t) is the Dirac delta function. By substituting 

equation (4) into equation (8), the Laplace transform of the 

solid temperature is obtained 
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whose inverse Laplace transform has an analytical 

expression  
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Here /cK K D    is the thermal effusivity, the 

quantity that measures the ability of the material to exchange 

heat with the environment [6,7]. 

 

C. Continuous illumination 

 

Now the sample surface is illuminated by a continuous light 

beam of intensity Io (W/m2). As before, we neglect heat 

losses by convection and radiation at the sample surface. 

Accordingly, the heat flux satisfies 
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whose Laplace transform is 
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By substituting equation (4) into equation (12), the Laplace 

transform of the solid temperature is obtained 
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whose inverse Laplace transform writes  
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  , see page 484 in Ref. [2]. 

 

 

III. DISCUSSION 
 
In the following, we will show calculations of the time 

evolution of the temperature depth profile in the three cases 

analysed in the previous section. Calculations are performed 

for AISI-304 stainless steel whose thermal properties are: K 

= 15 Wm-1K-1, D = 4 mm2/s [1] and therefore /K D  = 

7500 Js-0.5m-2K-1. 

Fig. 2a shows the depth dependence of the temperature of 

a semi-infinite block of stainless steel whose free surface is 

put in contact at t = 0 with a thermal reservoir at 10 K above 

the ambient. Several times are considered. It can be observed 

that the surface (z = 0) suddenly reaches the reservoir 

temperature and that as time goes by heat reaches deeper 

regions of the steel block. From Eq. (6) and according to the 

definition of thermal diffusion length given in the 

introduction, as the distance at which the temperature is 

reduced by a factor e with respect to the surface, we obtain  
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since erfc(0) = 1. Solving Eq. (15) the thermal diffusion 

length is obtained: 1.62Dt  . 

Fig. 2b shows the depth dependence of the temperature 

of the same semi-infinite block of stainless steel as in Fig. 

2a, whose free surface is illuminated by a brief flash lighting 

of 25 kJ/m2. Five times after the laser lighting are plotted. It 

can be observed that at short times the surface temperature is 

very high but all the energy is concentrated close to the 

surface. At longer times, the surface temperature 

monotonically decreases while heat penetrates into deeper 

regions. From Eq. (10) together with the definition of 

thermal diffusion length, we obtain 
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indicating that the thermal diffusion length in this problem 

is: 4Dt  . 

Finally, Fig. 2c shows the depth dependence of the 

temperature of the semi-infinite block of stainless steel we 

are dealing with, whose free surface is illuminated by a 

continuous light beam of intensity 1 kW/m2. Five times after 

the laser lighting are plotted. In this case, both the surface 

temperature and the penetration depth are increasing with 

time. From Eq. (14) together with the definition of thermal 

diffusion length, we obtain 
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where ierfc(0) = -0.5. Solving this equation, the thermal 

diffusion length in this problem is obtained: 0.936Dt  . 

In Fig. 2 dots represent the thermal diffusion length at 

each time. 

As can be seen, the thermal diffusion length is not a 

universal value, but it depends on the experimental 

conditions. Anyway, for the three cases that we have studied 

in this article the difference is not very high. Accordingly, 

we propose an intermediate and easy to remember value to 

estimate the penetration depth of heat in transient problems: 
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FIGURE 2. (a) Depth dependence of the temperature of a semi-

infinite block of stainless steel whose free surface is put in contact 

with a thermal reservoir at 10 K. Six times are plotted. (b) The same 

when the steel block is illuminated by a brief flash lighting of 25 

kJ/m2. (c) The same when the steel block is illuminated by a 

continuous light beam of intensity 1 kW/m2. Dots indicate the 

thermal diffusion length at each time. 
 

 

As the thermal diffusion length depends on the square root of 

time, the speed of heat conduction is not constant, but it 

decreases with the square root of time: 
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The quantity that governs the speed of heat conduction is the 

thermal diffusivity [6]. Typical values of this magnitude are 

0.1-0.2 mm2/s for thermal insulators as polymers, cork and 

wood; 0.5-2 mm2/s for glasses and oxides; 10-30 mm2/s for 

titanium, nickel, lead and steel; 100-200 mm2/s for 

aluminium, copper, silver and gold; and 103 mm2/s for 

diamond, the bulk material with the highest thermal 

diffusivity [1]. Figure 3 represents the penetration depth of 

heat by conduction as a function of time according to Eq. 

(18). Five values of the thermal diffusivity, covering the 

whole range of solid materials, are plotted. We use 

logarithmic scale, where this relationship is linear with a 

slope of 0.5. This means that, for all kinds of materials, to 

increase the penetration depth by a factor of ten one has to 

wait for a time two orders of magnitude longer. This figure 
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allows a quick estimation of the penetration depth of heat for 

any kind of material. It is worth mentioning that between the 

poorest thermal conductors (polymers) and the best one 

(diamond) the penetration depth changes a factor of a 

hundred. For instance, in the first second after stimulating 

the sample surface, heat travels 0.45 mm in a polymeric 

sample, but 4.5 cm in diamond (see Fig. 3).  
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FIGURE 3. Penetration depth of heat as a function of time 

according to Eq. (17) in logarithmic scale. Five thermal diffusivities 

are considered. 

 
 

IV. CONCLUSIONS 
 

The heat diffusion equation predicts an instantaneous 

temperature elevation at any position of the material after a 

local perturbation. Although this issue deserves fundamental 

research, it is not a constraint when studying heat conduction 

problems at a macroscopic level since the predicted 

temperature rise far away from the perturbation region is so 

small that it is non-measurable. However, the question of 

how deep heat propagates by conduction inside a solid 

sample still remains. In this paper, we have proposed a 

mathematical expression for the thermal diffusion length, 

which is valid for several configurations of surface 

stimulation: a thermal reservoir, a brief flash lighting and a 

continuous light beam. This expression allows lecturers and 

students to estimate the depth penetration, which depends on 

the thermal diffusivity and time. We expect this article to be 

useful for physics lecturers to attract the attention of physics 

students on heat conduction. 
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