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Abstract 
By using the generalized Bopp's shift method, conventional perturbation theory, and the Greene-Aldrich approximation to 

handle the centrifugal term, we have studied improved energy-dependent screened Coulomb potential model in three-

dimensional non-commutative phase-space in the framework of deformed Schrödinger equation (DSE). We discovered the new 

energy eigenvalues of neutral and Hydrogenic atoms. The obtained eigenfunctions were a function of the discrete atomic 

quantum numbers (𝑗, 𝑙, 𝑠, and 𝑚), the gas state, the non-commutativity parameters (𝛩, 𝜃), and the dimensional parameters of 

the standard energy-dependent screened Coulomb potential (𝑔, 𝐴, 𝛼), which shows the depth of the potential, the energy slope 

parameter, and the potential range. The associated Hamiltonian operator, combining the standard energy-dependent screened 

Coulomb potential Hamiltonian operator with three additional operators, the perturbed spin-orbit interaction, we have 

confirmed the new modified Zeeman operator and the perturbative Fermi gas. By altering a few potential parameters, we 

explore two exceptional situations to demonstrate the precision of our results. We think this is the development of hydrogen 

atom devices and atomic physics. 

 

Keywords: Schrödinger equation, Energy-dependent screened Coulomb Potential, Non-commutative phase-space, 

Generalized Bopp’s shift method, Star product, Non-commutative phase-space. 

 

Resumen 
Utilizando el método de desplazamiento de Bopp generalizado, la teoría de perturbaciones convencional y la aproximación de 

Greene-Aldrich para manejar el término centrífugo, hemos estudiado un modelo mejorado de potencial de Coulomb apantallado 

dependiente de la energía en un espacio de fases no conmutativo tridimensional en el marco de la ecuación de Schrödinger 

deformada (DSE). Descubrimos los nuevos autovalores de energía de átomos neutros e hidrogénicos. Las funciones propias 

obtenidas fueron una función de los números cuánticos atómicos discretos (j, l, s y m), el estado gaseoso, los parámetros de no 

conmutatividad (Θ, ¯θ) y los parámetros dimensionales del potencial de Coulomb apantallado dependiente de la energía 

estándar (g, A, α), que muestra la profundidad del potencial, el parámetro de pendiente de energía y el rango del potencial. El 

operador hamiltoniano asociado, que combina el operador hamiltoniano del potencial de Coulomb apantallado dependiente de 

la energía estándar con tres operadores adicionales, la interacción espín-órbita perturbada, hemos confirmado el nuevo operador 

Zeeman modificado y el gas de Fermi perturbativo. Al modificar algunos parámetros potenciales, exploramos dos situaciones 

excepcionales para demostrar la precisión de nuestros resultados. Creemos que se trata del desarrollo de dispositivos basados 

en átomos de hidrógeno y de la física atómica. 

 

Palabras clave: Ecuación de Schrödinger, Potencial de Coulomb apantallado dependiente de la energía, Espacio de fases no 

conmutativo, Método de desplazamiento de Bopp generalizado, Producto estrella, Espacio de fases no conmutativo. 

 

 

I. INTRODUCTION  
 

It is known that exact solutions of the non-relativistic state of 

the Schrödinger equation (SE), Klein-Gordon equation 

(KGE), and Dirac equation (DE) were achieved exclusively 

in the two aspects of the harmonic oscillator and the hydrogen 

atom. In the past years, many researchers have investigated 

SE, KGE, and DE using many methods, including the 

Nikiforov-Uvarov method, asymptotic iteration method, 

supersymmetric quantum mechanics, factorization method in 

quantum mechanics, and functional analysis method, to solve 

many problems for example,, the Hulten potential [1], the 

Eckart potential [2], the hyperbolic potential [3], the Poschel-

Teller potential [4], and the generalized hyperbolic potential 

model [5]. The Yukawa potential is considered one of the 

most important potentials, which attracted researchers to 

study it because it contains profound applications in many 

fields. This potential, also known as the static screened 

Coulomb, the Debye-Hückel, or the Thomas-Fermi [6], is an 

approximate solvable potential often used to compute bound-

state normalizations and energy levels of neutral atoms [7, 8, 

9, 10]. These potentials have received considerable attention 

since the early days of quantum mechanics because of the 

wide range of applications previously mentioned, they have 

been considered one of the oldest pieces of knowledge since 
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1935 by researchers and the latest interest in the microscopic 

scale [10, 11, 12, 13]. Furthermore, this potential also plays 

an important role in plasma physics, known as the Debye-

Huckel potential. In addition to these obvious physical 

applications, this potential, together with Hulthen's and the 

exponential potential, plays an essential role as a good test 

case in potential scattering studies [14, 15, 16, 17]. 

Furthermore, it is used to compute bound-state 

normalizations and energy levels of neutral atoms, and it is 

also used in dusty or complex plasma and colloidal 

suspensions [18]. The study of the Yukawa potential still 

receives excellent attention from many authors [19, 20, 21, 

22]. In 2017 and 2020, we studied the Yukawa potential and 

the perturbed Yukawa potential in non-commutative, non-

relativistic quantum mechanics and relativistic contexts using 

Bopp’s shift method parameter for one-electron atoms [23, 

24]. Recently, we have studied hydrogen-like atoms (or 

hydrogenic atoms) such as (He+, Li
2+

and Be3+) under an 

improved trigonometric Rosen-Morse potential model in the 

3D-NCPS Symmetries [25]. In particular, the Yukawa 

potential describes the interactions of hydrogen-like atoms 

[24]. Many researchers in the fields of physics and chemistry 

have also devoted great attention to studying the non-

relativistic and relativistic dynamical quantum systems of the 

energy dependence of variant potentials, for example, the 

energy-dependent screened Coulomb potential [26]. This 

work, motivated by several recent studies such as the non-

renormalizable standard model, string theory, quantum 

gravity, and NCQM, has attracted much attention [27, 28, 29, 

30, 31, 32, 33, 34, 35, 36]. In 1930, Heisenberg introduced 

the idea of non-commutativity, which was formalized by 

Snyder in 1947. We want to extend the study in Ref. 26 to the 

case of NR-NCQM to explore the possibility of finding other 

new applications and more profound interpretations of the 

subatomic scales under improved energy-dependent screened 

Coulomb potential. The non-relativistic energy levels of 

hydrogen atoms and neutral atoms such as (22Na, 12Ca, 158Au) 

atoms, which interacted with improved energy-dependent 

screened Coulomb potentials with arbitrary angular momenta 

in the context of 3D-NCPS symmetries, have not yet been 

studied. The major objective of the present paper is to obtain 

approximate solutions of the DSE with an improved energy-

dependent screened Coulomb potential in 3D-NCPS 

symmetries using the improved approximation scheme to the 

centrifugal term for 𝑙 ≠ 0 states and the generalized Bopp 

shift method, in addition to the standard perturbation theory. 

We believe that no researcher has realized this research so 

far. The new symmetries have a twofold effect, the energy-

dependent directly influences the first screened Coulomb 

potential 𝑉𝑒𝑠𝑐(𝑟), which takes on a new form (we depend on 

the system of natural units in this research 1 c ):  

 

𝑉𝑛𝑐
𝑒𝑠𝑐(𝑟) = 𝑉𝑒𝑠𝑐(𝑟) − 𝐴(1 + 𝑔𝐸𝑛𝑙)

𝑒𝑥𝑝(−𝛼𝑟)

2𝑟2
(𝛼 +

1

𝑟
) 𝐋
→

𝚯
→

.  (1) 

 

The first term [26] 𝑉𝑒𝑠𝑐(𝑟) is given by: 

 

𝑉𝑒𝑠𝑐(𝑟) = −
𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

𝑟
,                        (2) 

 

which defines the energy-dependent screened Coulomb 

potential. Here A  and g  are the potential depth, and the 

energy slope parameter is the range of the potential and the 

distance between the two particles r . As for the second part 

of the effect of topological defects, it is of a phased nature, 

that is, it is on the kinetic energy known in the literature to 

become as follows: 

−
𝛥

2𝜇
→ −

𝛥𝑛𝑐

2𝜇
= −

𝛥

2𝜇
+
𝛉
→

𝐋
→

2𝜇
.                              (3) 

The new couplings (𝐋
→

𝚯
→

 and 𝛉
→

𝐋
→

) will be defined in Sect. 3. 

While ( nc ,  ) are the Laplacian operators in 3D-NCPS 

symmetries and the usual quantum mechanics. Furthermore, 

the second part of Eq. (1) denotes the influence of the non-

commutativity proprieties on the standard energy-dependent 

screened Coulomb potential. Moreover (−
𝛉
→

𝐋
→

2𝜇
) is the change 

applied to the operator of kinetic energy due to the influence 

of the non-commutativity proprieties. The current work will 

study the effect of non-commutativity properties on the 

potential and the kinetic energy using the generalized Bopp’s 

shift method (see the third section). The structure of non-

relativistic non-commutative quantum mechanics based on 

NC time-independent canonical commutation relations in 

Schrödinger picture (SP), Heisenberg picture (HP), and 

interactions picture (IP), respectively, as follows [37, 38, 39, 

40, 41, 42, 43, 44, 45, 46, 47]: 

 

[�̂�𝜇 ,∗ �̂�𝜈] = [�̂�𝜇(𝑡),∗ �̂�𝜈(𝑡)] = [�̂�𝐼
𝜇(𝑡),∗ �̂�𝐼

𝜈(𝑡)] = 𝑖ℏ𝑒𝑓𝑓𝛿𝜇𝜈,    
(4) 

[�̂�𝜇 ,∗ �̂�𝜈] = [�̂�𝜇(𝑡),∗ �̂�𝜈(𝑡)] = [�̂�𝐼
𝜇(𝑡),∗ �̂�𝐼

𝜈(𝑡)] = 𝑖𝜃𝜇𝜈,   (5) 

 

and 

 

[�̂�𝜇 ,∗ �̂�𝜈] =  [�̂�𝜇(𝑡),∗ �̂�𝜈(𝑡)] = [�̂�𝐼
𝜇(𝑡)(𝑡),∗ �̂�𝐼

𝜈(𝑡)] = 𝑖𝜃
𝜇𝜈
, (6) 

 

where the indices 𝜇, 𝜈 ≡ 1,3, ℏ𝑒𝑓𝑓 = ℏ(1 +
𝜃𝜃

4ℏ2
) is the 

effective Planck constant. The two infinitesimal parameters 

(𝜃𝜇𝜈, 𝜃
𝜇𝜈
) ≡ 𝜀𝜇𝜈(𝜃, 𝜃) (If compared with energy) are 

present two antisymmetric elements real matrices with 

dimensions of the square length and square momentum, 

respectively, and the notion 𝛿𝜇𝜈 denote to the Kronecker 

symbol. Furthermore, (∗) denote the star product that is 

generalized between two arbitrary functions (𝑓, 𝑔) (𝑥, 𝑝) to 

the new form (𝑓�̂�)(�̂�, �̂�) ≡ (𝑓 ∗ 𝑔)(𝑥, 𝑝) in 3D-NCPS 

symmetries as follows [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 

58]: 

(𝑓 ∗ 𝑔)(𝑥, 𝑝) ≈ (𝑓𝑔 −
𝑖

2
𝜃𝜇𝜈

𝜕𝑓

𝜕𝑥𝜇

𝜕𝑓

𝜕𝑥𝜈
−

𝑖

2
𝜃
𝜇𝜈 𝜕𝑓

𝜕𝑝𝜇

𝜕𝑓

𝜕𝑝𝜈
) (𝑥, 𝑝). 

(7) 

This permuted us to construct a scale of two space and phase 

cells with volumes 𝐥𝐧𝐜𝐬
𝟑 ≡ 𝛉

𝟑

𝟐 and 𝐥𝐧𝐜𝐩
𝟑 ≡ 𝛉

𝟑/𝟐
, respectively. 

On the other hand, Eq. (7) enables us to satisfy the 
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hypothesized algebra in Eqs. (4), (5) and (6). The second and 

third terms in the above equation are the effects of (space-

space) and (phase-phase) non-commutativity properties, 

respectively. This means that the principle of uncertainty for 

Heisenberg is generalized to include other new uncertainty: 

|𝛥�̂�𝜇𝛥�̂�𝜈| ≥
|𝜃𝜇𝜈|

2
   and    |𝛥�̂�𝜇𝛥�̂�𝜈| ≥

|𝜃
𝜇𝜈
|

2
 ,        (8) 

related to the positions   xx ˆ,ˆ  and corresponding momenta

  pp ˆ,ˆ , respectively, in addition to the usual uncertainty 

known in the literature: 

|𝛥𝑥𝛥𝑝| ≥
𝛿𝜇𝜈ℏ

2
⇒ |𝛥�̂�𝜇𝛥�̂�𝜈| ≥

𝛿𝜇𝜈ℏ𝑒𝑓𝑓

2
 ,                   (9) 

of   px ˆ,ˆ  coordinates which are known in the literature. 

However, the operators 𝜉𝐻
𝜇(𝑡) = (�̂�𝜇 ∨ �̂�𝜇)(𝑡) and 𝜉𝐼

𝜇(𝑡) =

(�̂�𝐼
𝜇
∨ �̂�𝐼

𝜇
)(𝑡) in both two representations (HP and IP), 

respectively, depending on the corresponding usual 

operator 𝜉𝑖𝑆 = �̂�𝑖 ∨ �̂�𝑖 , in SP which known in the literature, 

as follows:   

𝜉𝐻
𝜇(𝑡) = 𝑒𝑥𝑝(𝑖�̂�𝑒𝑠𝑐𝑇) 𝜉𝑆

𝜇(𝑡) 𝑒𝑥𝑝(−𝑖�̂�𝑒𝑠𝑐𝑇) ⇒ 

𝜉𝐻
𝜇(𝑡) = 𝑒𝑥𝑝(𝑖�̂�𝑛𝑐

𝑒𝑠𝑐𝑇) ∗ 𝜉𝑆
𝜇(𝑡) ∗ 𝑒𝑥𝑝(−𝑖�̂�𝑛𝑐

𝑒𝑠𝑐𝑇),        (10)  

and 

𝜉𝐼
𝜇(𝑡) = 𝑒𝑥𝑝(𝑖�̂�𝑜

𝑒𝑠𝑐𝑇) 𝜉𝑆
𝜇
𝑒𝑥𝑝(−𝑖�̂�𝑜

𝑒𝑠𝑐𝑇) 

⇒ 𝜉𝐼
𝜇(𝑡) = 𝑒𝑥𝑝(𝑖�̂�𝑛𝑐𝑜

𝑒𝑠𝑐𝑇) ∗ 𝜉𝑆
𝜇
∗ 𝑒𝑥𝑝(−𝑖�̂�𝑛𝑐𝑜

𝑒𝑠𝑐𝑇).         (11)  

Here 𝑇 ≡ 𝑡 − 𝑡0, 𝜉𝑆
𝜇
= 𝑥𝜇 ∨ 𝑝𝜇, 𝜉𝐻

𝜇(𝑡) =  (𝑥𝜇 ∨ 𝑝𝜇)(𝑡) and  

𝜉𝐼
𝜇(𝑡) = (𝑥𝐼

𝜇
∨ 𝑝𝐼

𝜇
)(𝑡) are just the physical values in the 

usual QM symmetries. The operators (�̂�𝑛𝑐
𝑒𝑠𝑐,�̂�𝑛𝑐𝑜

𝑒𝑠𝑐 ) and 

( �̂�𝑒𝑠𝑐, �̂�𝑜
𝑒𝑠𝑐) are the standard and free quantum Hamiltonian 

for energy-dependent screened Coulomb in the are the 

corresponding Hamiltonian operators for improved energy-

dependent screened Coulomb in 3D-NCPS and QM 

symmetries, respectively. The motion equations of dynamic 

systems 
𝑑𝜉𝐻
𝜇
(𝑡)

dt
 in QM will change to the form 

𝑑�̂�𝐻
𝜇
(𝑡)

dt
 of the 

symmetries of 3D-NCPS as follows: 

𝑑𝜉𝐻
𝜇(𝑡)

dt
= −𝑖[𝜉𝐻

𝜇(𝑡), �̂�𝑦𝑝] +
𝜕𝜉𝐻

𝜇(𝑡)

𝜕𝑡
⇒ 

𝑑�̂�𝐻
𝜇
(𝑡)

dt
= −𝑖[𝜉𝐻

𝜇(𝑡),∗ �̂�𝑛𝑐
𝑦𝑝
] +

𝜕�̂�𝐻
𝜇
(𝑡)

𝜕𝑡
.                  (12) 

The structure of the current paper is as follows: The ordinary 

SE with energy-dependent screened Coulomb based on Ref. 

26 is briefly discussed in the next section. In Section III, we 

study the DSE using the generalized Bopp shift method for 

an improved energy-dependent screened Coulomb potential. 

Then, using standard perturbation theory, we find the 

corrected quantum spectrum of (𝑛, 𝑙, 𝑚)𝑡ℎ excited levels 

induced with the help of spin-orbit interaction within the 

context of the local 3D-NCPS symmetries. Then, we 

calculate the magnetic and Fermi gas spectrum with 

enhanced energy-dependent screened Coulomb. In Section 

IV, we continue discussing the global spectrum, the related 

NC Hamiltonian operator, and the energy levels of the neutral 

atoms (22Na, 12Ca, 158Au) and hydrogen-like atoms (He+, 

Li
2+

, B,3+) for an improved energy-dependent screened 

Coulomb potential. Finally, we summarize our work and give 

concluding remarks in Section V. 

 

 

II. A BRIEF REVIEW OF THE EIGEN-

FUNCTIONS AND THE ENERGY EIGEN-

VALUES FOR STANDARD ENERGY DEPENDED 

SCREENED COULOMB POTEN-TIAL IN 3D-QM 

SYMMETRIES 
 
The study of the SE for the energy-dependent screened 

Coulomb potential 𝑉(𝑟, 𝐸𝑛𝑙) in ordinary non-relativistic 

quantum mechanics is an essential source of understanding 

of this system in the symmetries of 3D-NCPS, we will devote 

this section to this purpose. Ref. [26] gives the version of the 

energy-dependent screened Coulomb potential determined in 

Eq. (2). Since the energy-dependent screened Coulomb 

potential has spherical symmetry, allowing the solutions of 

the time-independent Schrödinger equation of the known 

form    ,,r
𝑅𝑛𝑙(𝑟)

𝑟
𝑌𝑙
𝑚(𝜃, 𝜙), to separate the radial 

𝑅𝑛𝑙(𝑟) and angular 𝑌𝑙
𝑚(𝜃, 𝜙) parts of the wave function. 

Thus, the radial part becomes the following.  

 
𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2
+ 2𝜇 (𝐸𝑛𝑙 − 𝑉𝑒𝑓𝑓

esc (𝑟, 𝐸𝑛𝑙)) 𝑅𝑛𝑙(𝑟) = 0        (13) 

 

Here 

 

𝑉𝑒𝑓𝑓
esc (𝑟, 𝐸𝑛𝑙) ≡ −

𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

𝑟
+
𝑙(𝑙+1)

2𝜇𝑟2
              (14) 

 

Here 𝑉𝑒𝑓𝑓
esc (𝑟, 𝐸𝑛𝑙) is the effective potential, 𝜇 is the reduced 

mass, 𝐸𝑛𝑙 are the eigenvalues of the energy-dependent 

screened Coulomb potential model, while 𝑛 and 𝑙 are the 

radial and orbital angular momentum quantum numbers. Ref. 

[26] gives the complete wave function as a function of the 

Jacobi polynomial and the spherical harmonic functions: 

 

𝛹(𝑟, 𝜃, 𝜙) = 𝐵𝑛𝑙
𝑧
√𝜀𝑛𝑙
2

𝑟
(1 − 𝑧)𝐺𝑙   𝑃𝑛

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(1 −

2𝑧)𝑌𝑙
𝑚(𝜃, 𝜙) ,           (15) 

 

with 

 
𝑧 = 𝑒𝑥𝑝( − 2𝛼𝑟),

𝜀𝑛𝑙
2 = −(

𝜇𝐸𝑛𝑙

2𝛼2
−
𝑙(𝑙+1)

12
) ,

𝐺𝑙 ≡ 1/2 + √¼+ 𝑙(𝑙 + 1)

}                 (16) 

 

while 𝐵𝑛𝑙 is the normalization constant. Therefore, Ref. [26] 

gives the discrete energy eigenvalues of the energy-

dependent screened Coulomb potential as a function of the 
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principal quantum number and the angular momentum 

quantum number l:   

 

𝐸𝑛𝑙 = −
𝛼2

2𝜇
[(
𝑛 + 1/2 + √1/4 + 𝑙(𝑙 + 1)

−
𝜇𝐴(1+𝑔𝐸𝑛𝑙)

𝛼(𝑛+1/2+√1/4+𝑙(𝑙+1))

)

2

−
𝑙(𝑙+1)

3
] (17) 

 

 

 

III. METHOD AND THEORETICAL 

APPROACH  
 

A. Solution of DSE for the improved energy-dependent 

screened Coulomb potential 

 

In this subsection, we will provide an overview or a brief 

introduction to the improved energy-dependent screened 

Coulomb potential 𝑉nc
𝑒𝑠𝑐(𝑟, 𝐸𝑛𝑙), in 3D-NCPS symmetries. To 

perform this task in the physical form of DSE, it is necessary 

to replace ordinary three-dimensional Hamiltonian operators 

�̂�𝑒𝑠𝑐(𝑝𝜇 , 𝑥𝜇), the ordinary complex wave function 𝛹 (𝑟
→
), 

and 𝐸𝑛𝑙 (in QM-symmetries) with three Hamiltonian 

operators �̂�𝑛𝑐
𝑒𝑠𝑐(�̂�𝜇 , �̂�𝜇), the complex wave function 𝛹 (�̂�

→

), 

and new values 𝐸𝑛𝑐
𝑒𝑠𝑐, respectively (in 3D-NCPS symmetries). 

Furthermore, replacing the ordinary product with a star 

product (∗), allows us to construct the DSE in 3D-NCPS 

symmetries as [40, 41, 42, 43, 44]: 

 

�̂�𝑛𝑐
𝑒𝑠𝑐(�̂�𝜇 , �̂�𝜇) ∗ 𝛹 (�̂�

→

) = 𝐸𝑛𝑐
𝑒𝑠𝑐𝛹 (�̂�

→

).                     (18)  

 

Which can be written in the equivalent form:   

 
𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2
+ 2𝜇 (𝐸𝑛𝑙 − 𝑉𝑒𝑓𝑓

esc (𝑟, 𝐸𝑛𝑙)) ∗ 𝑅𝑛𝑙(𝑟) = 0.      (19) 

 

We briefly introduce the generalized Bopp’s shift method so 

that the unfamiliar reader has no problem with the 

mathematical tool. This method is widely used in 3D-NCPS, 

and the solutions enable us to explore an effective way to 

obtain improved potential in 3D-NCPS, which is based on the 

following commutators [33, 34, 35, 36, 37, 38, 39]: 

 

{
[�̂�𝜇 , �̂�𝜈] = [�̂�𝜇(𝑡), �̂�𝜈(𝑡)] = 𝑖𝜃𝜇𝜈,  

[�̂�𝜇 , �̂�𝜈] = [�̂�𝜇(𝑡), �̂�𝜈(𝑡)] = 𝑖𝜃𝜇𝜈.
                      (20) 

 

The generalized positions and momentum coordinates  

(�̂�𝜇 , �̂�𝜇) in 3D-NCPS are dependent on corresponding usual 

generalized positions and momentum coordinates (𝑥𝜇 , 𝑝𝜇) in 

QM by the following, respectively [53, 54, 55, 56, 57, 58, 

59]: 

 

(𝑥𝜇 , 𝑝𝜇) ⇒ (�̂�𝜇 , �̂�𝜇) = (𝑥𝜇 −
𝜃𝜇𝜈

2
𝑝𝜈 , 𝑝𝜇 +

𝜃
𝜇𝜈

2
𝑥𝜈). (21) 

 

It is worth mentioning that the physicist Fritz Bopp was the 

first to consider pseudo-differential operators obtained from 

a symbol by the quantization rules (𝑥, 𝑝) → (𝑥 −
𝑖

2

𝜕

𝜕𝑝
, 𝑝 +

𝑖

2

𝜕

𝜕𝑥
) instead of the usual correspondence (𝑥, 𝑝) → (𝑥, 

𝑖

2

𝜕

𝜕𝑥
) 

[56, 60, 61]. The above equation allows us to obtain the two 

operators (�̂�2 and �̂�2) in 3D-NCPS symmetries [58, 59]: 

 

(𝑟2, 𝑝2)⏟    
QM

⇒ (�̂�2, �̂�2) = (𝑟2 − 𝐋
→

𝚯
→

 , 𝑝2  +  𝐋
→

𝛉
→

 )
⏟                      

3D-NCPS

 .      (22) 

 

The two couplings (𝐋
→

𝚯
→

 and  𝐋
→

𝛉
→

) are (𝐿𝑥𝛩12 + 𝐿𝑦𝛩23 +

𝐿𝑧𝛩13) and (𝐿𝑥𝜃12 + 𝐿𝑦𝜃23 + 𝐿𝑧𝜃13), respectively and ( xL , 

 yL and zL ) are the three components of the angular 

momentum operator �⃗� while 2/  (see refs.[23, 24, 

25, 35, 38, 40, 42]). In addition to what was previously 

mentioned about the effectiveness of this method in solving 

various non-relativistic quantum mechanics problems, its 

applications extended to the relativistic state. By way of 

examples, to draw the attention of the reader and the 

researcher alike, we mention its previous applications 

successfully on each of the deformed Klein-Gordon equation 

[62-79], the deformed Dirac equation [45, 80, 81, 82, 83, 84], 

in addition, the deformed Duffin-Kemmer equation [85, 86, 

87, 88]. Thus, the reduced Schrödinger equation (without star 

product) can be written as: 

 

𝐻𝑛𝑐
𝑒𝑠𝑐(�̂�𝜇 , �̂�𝜇)𝛹 (𝑟

→
) = 𝐸𝑛𝑐

𝑒𝑠𝑐𝛹 (𝑟
→
).               (23) 

 

Which can be written in the equivalent form: 

 
𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2
+ 2𝜇(𝐸𝑛𝑙 − 𝑉𝑒𝑠𝑐(�̂�, 𝐸𝑛𝑙))𝑅𝑛𝑙(𝑟) = 0.     (24) 

 

In 3D-NCPS symmetries, the Hamiltonian operator 

𝐻𝑛𝑐
𝑒𝑠𝑐(�̂�𝑖 , �̂�𝑖) and new effective potential 𝑉𝑒𝑠𝑐(�̂�, 𝐸𝑛𝑙) for the 

improved energy-dependent screened Coulomb potential can 

be expressed as: 

 

𝐻𝑛𝑐
𝑒𝑠𝑐(�̂�𝜇 , �̂�𝜇) ≡ 

𝐻𝑒𝑠𝑐 (�̂�𝜇 = 𝑥𝜇 −
𝜃𝜇𝜈

2
𝑝𝜈 , �̂�𝜇 = 𝑝𝜇 +

𝜃
𝜇𝜈

2
𝑥𝜈),       (25) 

 

and 

 

        𝑉(𝑟) ⇒ 𝑉𝑒𝑠𝑐(�̂�, 𝐸𝑛𝑙) = −
𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼�̂�)

�̂�
.      (26) 

 

After straightforward calculations, we can obtain the 

important terms (−
𝐴(1+𝑔𝐸𝑛𝑙)

�̂�
 ) and (−

𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼�̂�)

�̂�
) 

which will be used to determine the improved energy-

dependent screened Coulomb potential in 3D-NCPS 

symmetries as: 

 

−
𝐴(1+𝑔𝐸𝑛𝑙)

�̂�
= −

𝐴(1+𝑔𝐸𝑛𝑙)

𝑟
−
𝐴(1+𝑔𝐸𝑛𝑙)𝐋

→
𝚯
→

2𝑟3
+ 𝑂(𝛩2),    (27) 

 

and 
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𝑒𝑥𝑝(−𝛼�̂�) = 𝑒𝑥𝑝(−𝛼𝑟) +
𝛼 𝑒𝑥𝑝(−𝛼𝑟)𝐋

→
𝚯
→

2𝑟
+ 𝑂(𝛩2).    (28) 

 

By combining Eqs. (27) and (28), we can easily find the 

expression of (−
𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼�̂�)

�̂�
) in 3D-NCPS symmetries: 

 

−
𝐴(1 + 𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝑎�̂�)

�̂�
= −

𝐴(1 + 𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

𝑟
 

−𝐴(1 + 𝑔𝐸𝑛𝑙) (
𝑒𝑥𝑝(−𝛼𝑟)

2𝑟3
+
𝛼 𝑒𝑥𝑝(−𝛼𝑟)

2𝑟2
) 𝐋
→

𝚯
→

+ 𝑂(𝛩2).   (29) 

 

By making the substitution above Eq. (29) into Eq. (25), we 

obtain that our worked Hamiltonian operator 𝐻𝑛𝑐
𝑒𝑠𝑐(�̂�𝜇 , �̂�𝜇) 

satisfies the equation in 3D-NCPS symmetries: 

 

𝐻𝑛𝑐
𝑒𝑠𝑐(�̂�𝜇 , �̂�𝜇) = 𝐻𝑒𝑠𝑐(𝑝𝜇 , 𝑥𝜇) + 𝐻pert

𝑒𝑠𝑐(𝑟, 𝛩, �̄�),         (30) 

 

where the operator 𝐻𝑒𝑠𝑐(𝑝𝜇 , 𝑥𝜇) is the usual Hamiltonian 

operator for hydrogen-like atoms ( He , 2Li  , 3Be ) under 

standard energy-dependent screened Coulomb potential in 

3D-NRQM symmetries: 

 

𝐻𝑒𝑠𝑐(𝑝𝜇 , 𝑥𝜈) =
𝑝2

2𝜇
−
𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

𝑟
,                (31) 

 

while the rest three-terms are proportional with two 

infinitesimal parameters (𝛩 and �̄�) and then we can be 

considered as perturbation terms  𝐻pert
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) in 3D-NCPS 

symmetries as: 

 

𝐻pert
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) = 

=−
𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

2𝑟2
(𝛼 +

1

𝑟
) 𝐋
→

𝚯
→

+
𝐋
→
𝛉
→

2𝜇
.             (32) 

 

The newly induced part 𝐻pert
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) appears as the result of 

the deformation of the non-commutativity phase- space 

symmetries. In recent work, we can disregard the second term 

in 𝐻pert
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) the operator because we are interested in the 

corrections of the first order (𝛩 and 𝜃). 

 

B. Perturbed spin-orbit Hamiltonian operator for 

hydrogen-like atoms under improved energy-dependent-

screened Coulomb potential  

 

In this subsection, we aimed to obtain the applicable physical 

form of the induced Hamiltonian that appears due to the non-

commutativity of phase-space proprieties. To achieve this 

goal, we replace both (𝐋
→

𝚯
→

 ,𝐋
→

𝛉
→

) with useful physical forms 

𝛽(𝛩𝐋
→

𝚯
→

, �̄�𝐋
→

𝐒
→

), respectively. We replace 𝐻pert
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) by new 

useful form 𝐻𝑠𝑜
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) to obtain the new physical form of 

the perturbed Hamiltonian as follows [62, 63, 64, 65, 66, 67]: 

 

𝐻𝑠𝑜
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) ≡ 

𝛽 {
𝜃

2𝜇
−
𝐴(1+𝑔𝐸𝑛𝑙)

2𝑟2
(𝛼 +

1

𝑟
) 𝑒𝑥𝑝(−𝑎𝑟)𝛩} 𝐋

→

𝐒
→

   (33) 

with 

𝛩2 = 𝛩12
2 + 𝛩23

2 + 𝛩13
2

𝜃
2
= 𝜃12

2
+ 𝜃23

2
+ 𝜃13

2 }                                    (34) 

 

And 𝛽 ≈
1

137
 is the atomic fine structure constant while 𝑆

→

 

denoting the spin of the hydrogen-like atoms (He+, Li
2+

, 

Be3+). As a direct result, the spin-orbit interactions 

𝐻so
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) induced automatically due to the deformation 

of the phase- space. To the best of our knowledge, in ordinary 

QM symmetries, we can replace the quantum spin-orbit 

coupling 𝐋
→

𝐒
→

 with 
1

2
(𝐉
→
𝟐 − 𝐋

→
𝟐 − 𝐒

→
𝟐), here J

→

= L
→

+ S
→

 is the 

global momentum of the hydrogen-like atoms ( He+, Li
2+

, 

Be3+). These data allow us to formulate the following 

equation: 

 

𝐻pert
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) =

𝛽

2
{
𝜃

2𝜇
−
𝐴(1+𝑔𝐸𝑛𝑙)

2𝑟2
(𝛼 +

 
1

𝑟
) 𝑒𝑥𝑝(−𝑎𝑟)𝛩} ( J

→
2 − L

→
2 − S

→
2).                 (35) 

 

For hydrogen-like atoms, the physical eigenvalues j of the J
→

 

can be confined to the interval |𝑙 − 1/2| ≤ 𝑗 ≤ |𝑙 + 1/2|. 
We need to determine two-sided bounds to the eigenvalues 

𝑘(𝑗, 𝑙, 𝑠) of the operator ( J
→
2 − L

→
2 − S

→
2) as follows: 

 

𝑘(𝑗, 𝑙, 𝑠) = {
𝑘− (𝑗 = 𝑙 −

1

2
, 𝑙, 𝑠 =

1

2
) for spin_down,

𝑘+ (𝑗 = 𝑙 +
1

2
, 𝑙, 𝑠 =

1

2
) for spin_up.

  

(36)  

 

On the other hand, it is possible to determine a diagonal 

matrix  ,,rH esc

so
 of order (33) with diagonal elements 

 
11

esc

so
H ,  

22

esc

so
H  and (𝐻𝑠𝑜

𝑒𝑠𝑐)33 = 0 as follows:  

 
(𝐻𝑠𝑜

𝑒𝑠𝑐)11 = 𝛼𝛽𝑘+(𝑙) 

{
𝜃

2𝜇
−
𝐴(1+𝑔𝐸𝑛𝑙)

2𝑟2
(𝛼 +

1

𝑟
) 𝑒𝑥𝑝(−𝑎𝑟)𝛩}  if 𝑗 = 𝑙 +

1

2
,     (37) 

 

and    
(𝐻𝑠𝑜

𝑒𝑠𝑐)22 = 𝛽𝑘−(𝑙) 

{
𝜃

2𝜇
−
𝐴(1+𝑔𝐸𝑛𝑙)

2𝑟2
(𝛼 +

1

𝑟
) 𝑒𝑥𝑝(−𝑎𝑟)𝛩}  if 𝑗 = 𝑙 −

1

2
.         (38) 

 

After straightforward calculation, the new radial function 

𝑅𝑛𝑙(𝑟) satisfies the following differential equation in 3D-

NCPS for hydrogen-like atoms such as He+, Li
2+

and Be3+ 

under improved energy-dependent screened Coulomb 

potential: 

 
𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2
+ 2𝜇(𝐸𝑛𝑐

𝑒𝑠𝑐 − 𝑉nc-eff
esc (𝑟, 𝐸𝑛𝑙) )𝑅𝑛𝑙(𝑟) = 0,    (39) 

 

with 

𝑉nc-eff
esc (𝑟, 𝐸𝑛𝑙) = 𝑉(𝑟, 𝐸𝑛𝑙) +

𝑙(𝑙 + 1)

2𝜇𝑟2
+ 



Lat. Am. J. Phys. Educ. Vol. 18, No. 2, June 2024 2302-6 http://www.lajpe.org 
 

𝛽 {
𝜃

2𝜇
−
𝐴(1+𝑔𝐸𝑛𝑙)

2𝑟2
(𝛼 +

1

𝑟
) 𝑒𝑥𝑝(−𝑎𝑟)𝛩} 𝐋

→

𝐒
→

.       (40)   

 

The above equation cannot be solved analytically for any state 

because of the potential centrifugal term and the studied 

potential itself. Therefore, in the present work, we consider the 

following approximation type suggested by (Greene and 

Aldrich) and Dong et al. for them [26, 89, 90]: 

 
1

𝑟2
≈

4𝛼2 𝑒𝑥𝑝(−2𝛼𝑟)

(1−𝑒𝑥𝑝(−2𝛼𝑟))2
.                           (41) 

 

Allow us to obtain the following useful approximations: 

 

  {

𝑒𝑥𝑝(−𝛼𝑟)

𝑟2
≈

4𝛼2𝑧
3
2

(1−𝑧)2
 ,

𝑒𝑥𝑝(−𝛼𝑟)

𝑟3
≈

8𝛼3𝑧2

(1−𝑧)3
.

                          (42) 

 

This allows the application of standard perturbation theory to 

determine the non-relativistic energy corrections 𝐸𝑠𝑜
𝑒𝑠𝑐 of 

hydrogen-like atoms (He+, Li
2+

, Be3+) at the first order of 

two infinitesimal parameters (𝛩 and 𝜃) due to phase-space 

non-commutativity properties, instead of solving exactly the 

DSE for the effective potential  nlEr,V esc

eff-nc
 given by Eq. 

(40). Thus, we now attempt to obtain corrected energy for the 

generalized effective potential 𝑉nc-eff
esc (𝑟, 𝐸𝑛𝑙) given by the 

previous approximations: 

 

𝑉nc-eff
esc (𝑧, 𝐸𝑛𝑙) = −

2𝛼𝐴(1+𝑔𝐸𝑛𝑙)𝑧

1−𝑧
+
4𝛼2𝑙(𝑙+1)

2𝜇(1−𝑧)2
+ 𝛽 {

𝜃

2𝜇
−

𝐴(1 + 𝑔𝐸𝑛𝑙) (
4𝛼3𝑧2

(1−𝑧)3
+
2𝛼2𝑧3/2

(1−𝑧)2
)𝛩} 𝐋

→

𝐒
→

.   (43) 

 

The principal goal of this subsection is to determine the energies 

(𝐸𝑠𝑜−𝑛
𝑢−𝑒𝑠𝑐(𝑘−, 𝑛, 𝛼, 𝐴, 𝑗, 𝑙, 𝑠) ≡ 𝐸𝑠𝑜−𝑛

𝑢−𝑒𝑠𝑐 and 

𝐸𝑠𝑜−𝑛
𝑑−𝑒𝑠𝑐(𝑘−, 𝑛, 𝛼, 𝐴, 𝑗, 𝑙, 𝑠)   ≡  𝐸𝑠𝑜−𝑛

𝑑−𝑒𝑠𝑐) produced from the 

perturbed Hamiltonian operator  ,,
so

rH esc
 corresponding 

to the two polarities (𝑗 = 𝑙 +
1

2
  and 𝑗 = 𝑙 −

1

2
 ) at the first 

order of two parameters 𝛩 and 𝜃) for hydrogen-like atoms for 

(𝑛, 𝑙) states by applying standard perturbation theory and 

through the structure constants which specified the 

dimensionality of improved energy-dependent screened 

Coulomb potential of hydrogen-like atoms (He+, Li
2+

, 

Be3+). Thus, we obtain the following results with the 

shorthand notations 𝐸𝑠𝑜−𝑛
𝑢−𝑒𝑠𝑐 and 𝐸𝑠𝑜−𝑛

𝑑−𝑒𝑠𝑐 of the corrected 

energy spectrum: 

𝐸𝑠𝑜−𝑛
𝑢−𝑒𝑠𝑐 = 𝛽𝑘+𝐵𝑛𝑙

2 ∫
0

+∞

𝑧
2√𝜀𝑛𝑙

2

(1 − 𝑧)2𝐺𝑙
2
[𝑃𝑛

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(1 −

2𝑧)]

2

{
𝜃

2𝜇
− 𝐴(1 + 𝑔𝐸𝑛𝑙) (

4𝛼3𝑧2

(1−𝑠)3
+

2𝛼2𝑧
3
2

(1−𝑠)2
)𝛩}𝑑𝑟,    (44) 

and 

𝐸𝑠𝑜−𝑛
𝑑−𝑒𝑠𝑐 = 𝛽𝑘−𝐵𝑛𝑙

2 ∫
0

+∞

𝑧
2√𝜀𝑛𝑙

2

(1 − 𝑧)2𝐺𝑙
2
[𝑃𝑛

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(1 −

2𝑧)]

2

{
𝜃

2𝜇
− 𝐴(1 + 𝑔𝐸𝑛𝑙) (

4𝛼3𝑧2

(1−𝑠)3
+

2𝛼2𝑧
3
2

(1−𝑠)2
)𝛩}𝑑𝑟,    (45) 

 

We have 𝑧 = 𝑒𝑥𝑝( − 2𝛼𝑟), and this allows us to 

obtain (𝑑𝑟 = −
1

2𝛼

𝑑𝑧

𝑧
). After introducing a new variable 

 zs 21 , we obtain (𝑑𝑟 =
1

2𝛼

𝑑𝑠

1−𝑠
) and (1 − 𝑧 =

𝑠+1

2
). 

According to this change of variable, the approximations in 

Eq. (42) become: 

 
𝑒𝑥𝑝(−𝛼𝑟)

𝑟2
≈
4𝛼2𝑧3/2

(1−𝑧)2
=
4√2𝛼2(1−𝑠)3/2

(1+𝑠)2
,                (46a) 

 

and  
𝑒𝑥𝑝(−𝛼𝑟)

𝑟3
≈

8𝛼3𝑧2

(1−𝑧)3
=
16𝛼3(1−𝑠)2

(1+𝑠)3
,                 (46b) 

 

This allows us to reformulate Eqs. (44.1) and (44.2) as 

follows: 

 

2
2𝐺𝑙

2+2√𝜀𝑛𝑙
2 +1

𝛼𝐸𝑠𝑜−𝑛
𝑢−𝑒𝑠𝑐

𝐵𝑛𝑙
2 = 𝛽𝑘+∫

−1

+1

(1 − 𝑠)
2√𝜀𝑛𝑙

2 −1
 

(1 + 𝑧)2𝐺𝑙
2
[𝑃𝑛

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(𝑠)]

2

 

{−𝐴(1 + 𝑔𝐸𝑛𝑙) (
8𝛼(1−𝑠)2

(1+𝑠)3
+
2√2(1−𝑠)3/2

(1+𝑠)2
)𝛩 −

𝜃

2𝜇
} 𝑑𝑧,    (47) 

 

and 

 

2
2𝐺𝑙

2+2√𝜀𝑛𝑙
2 +1

𝛼𝐸𝑠𝑜−𝑛
𝑑−𝑒𝑠𝑐

𝐵𝑛𝑙
2 = 𝛽𝑘−∫

−1

+1

(1 − 𝑠)
2√𝜀𝑛𝑙

2 −1
 

(1 + 𝑧)2𝐺𝑙
2
[𝑃𝑛

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(𝑠)]

2

 

{−𝐴(1 + 𝑔𝐸𝑛𝑙) (
8𝛼(1 − 𝑠)2

(1 + 𝑠)3
+
2√2(1 − 𝑠)3/2

(1 + 𝑠)2
)𝛩

−
𝜃

2𝜇
}𝑑𝑧.                                                  (48) 

 

Which can also be rewritten in the non-relativistic energy 

corrections 𝐸𝑠𝑜−𝑛
𝑢−𝑒𝑠𝑐(𝑘+, 𝑛, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑠) and 

𝐸𝑠𝑜−𝑛
𝑑−𝑒𝑠𝑐(𝑘−, 𝑛, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑠) at the first order of two 

infinitesimal parameters (  and  ) for the hydrogen-like 

atoms ( He+, Li
2+

, Be3+) as follows: 

 

𝐸𝑠𝑜−𝑛
𝑢−𝑒𝑠𝑐 = 𝛽𝐵𝑛𝑙

2 𝑘+ 

{𝛩 ∑ 𝑇𝑖
2
𝑖=1 (𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜃

2𝜇
𝑇3(𝑛, 𝑙, 𝛼, 𝑔)},       (49) 
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and 

𝐸𝑠𝑜−𝑛
𝑑−𝑒𝑠𝑐 = 𝛽𝐵𝑛𝑙

2 𝑘− 

{𝛩 ∑ 𝑇𝑖
2
𝑖=1 (𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜃

2𝜇
𝑇3(𝑛, 𝑙, 𝛼, 𝑔)}.         (50)  

 

Here, the 2 factors 𝑇𝑖(𝑛, 𝑙, 𝛼, 𝐴) (𝑖 = 1,2) and 𝑇3(𝑛, 𝑙, 𝛼, 𝑔) 
are given by: 

𝑇1(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) ≡
−8𝛼𝐴(1+𝑔𝐸𝑛𝑙)

2
2𝐺𝑙
2+2√𝜀𝑛𝑙

2 +1
𝛼

∫
−1

+1

(1 − 𝑠)
2√𝜀𝑛𝑙

2 +1
(1 +

𝑠)2𝐺𝑙
2−3 [𝑃𝑛

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(𝑠)]

2

𝑑𝑠,                             (51) 

𝑇2(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) ≡
−2√2𝐴(1+𝑔𝐸𝑛𝑙)

2
2𝐺𝑙
2+2√𝜀𝑛𝑙

2 +1
𝛼

∫
−1

+1

(1 − 𝑠)
2√𝜀𝑛𝑙

2 +1/2
(1 +

𝑠)2𝐺𝑙
2−2 [𝑃𝑛

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(𝑠)]

2

𝑑𝑠,                         (52) 

and  

𝑇3(𝑛, 𝑙, 𝛼, 𝑔) ≡ −
1

2
2𝐺𝑙
2+2√𝜀𝑛𝑙

2 +1
𝛼

∫
−1

+1

(1 − 𝑠)
2√𝜀𝑛𝑙

2 −1
(1 +

𝑠)2𝐺𝑙
2
[𝑃𝑛

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(𝑠)]

2

𝑑𝑠.                                 (53) 

 

It is natural to consider 𝑇3(𝑛, 𝑙, 𝛼, 𝑔) an equal one because the 

radial part of the wave function is normalized. For the ground 

state with a quantum number (𝑛 = 0, 𝑙), the Jacobi 

polynomial reduces to the  𝑃0

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(𝑠) = 1. This 

allows us to rewrite the above three factors in Eqs. (51) and 

(52) to the following simple form: 

 

𝑇1(0, 𝑙, 𝛼, 𝐴, 𝑔) ≡
−8𝛼𝐴(1 + 𝑔𝐸0𝑙)

2
2𝐺𝑙

2+2√𝜀𝑂𝑙
2 +1

𝛼

 

∫
−1

+1

(1 − 𝑠)
2√𝜀0𝑙

2 +1
(1 + 𝑠)2𝐺𝑙

2−3𝑑𝑠,                    (54) 

and                            

𝑇2(0, 𝑙, 𝛼, 𝐴, 𝑔) ≡
−2√2𝐴(1 + 𝑔𝐸0𝑙)

2
2𝐺𝑙

2+2√𝜀𝑂𝑙
2 +1

𝛼

 

∫
−1

+1

(1 − 𝑠)
2√𝜀0𝑙

2 +
1

2(1 + 𝑠)2𝐺𝑙
2−2𝑑𝑠.             (55) 

 

where l0  and lE0 are given by:    

 

𝜀0𝑙
2 = −(

𝜇𝐸0𝑙

2𝛼2
−
𝑙(𝑙+1)

12
),                              (56) 

and 

𝐸0𝑙 = −
𝛼2

2𝜇

[
 
 
 

(

1

2
+√

1

4
+ 𝑙(𝑙 + 1)

−
𝜇𝐴(1+𝑔𝐸0𝑙)

𝛼(1/2+√1/4+𝑙(𝑙+1))

)

2

−
𝑙(𝑙+1)

3

]
 
 
 

.         (57) 

 

Comparing Eqs. (52) and (53) with the integral of the 

form[90]: 

 

∫ (1 − 𝑝)𝑛+𝛼
+1

−1
(1 + 𝑝)𝑛+𝛽𝑑𝑝 =

       22𝑛+𝛼+𝛽+1
𝛤(𝑛+𝛼+1)𝛤(𝑛+𝛽+1)

(2𝑛+𝛼+𝛽+1)𝛤(2𝑛+𝛼+𝛽+1)
.                      (58) 

 

After straightforward calculations, we obtain the 2-factors 

as follows: 

 

𝑇1(0, 𝑙, 𝛼, 𝐴, 𝑔) ≡
−2𝛼𝐴(1+𝑔𝐸0𝑙)

𝛼

𝛤(2√𝜀0𝑙
2 +2)𝛤(2𝐺𝑙

2−2)

(2√𝜀0𝑙
2 +2𝐺𝑙

2−1)𝛤(2√𝜀0𝑙
2 +2𝐺𝑙

2−1)

,   

(59)  

and 

𝑇2(0, 𝑙, 𝛼, 𝐴, 𝑔) ≡
−𝐴(1+𝑔𝐸0𝑙)

𝛼

𝛤(2√𝜀0𝑙
2 +

3

2
)𝛤(2𝐺𝑙

2−1)

(2√𝜀0𝑙
2 +2𝐺𝑙

2−
1

2
)𝛤(2√𝜀0𝑙

2 +2𝐺𝑙
2−

1

2
)

. 

(60) 

 

Substituting Eqs. (59) and (60) in Eqs. (49) and (50), we 

obtain non-relativistic energy corrections for the ground state 

𝐸𝑠𝑜−0
𝑢−𝑒𝑠𝑐(𝑘+, 0, 𝛼, 𝐴, 𝑗, 𝑙, 𝑠)  and 𝐸𝑠𝑜−0

𝑑−𝑒𝑠𝑐(𝑘−, 0, 𝛼, 𝐴, 𝑗, 𝑙, 𝑠) at the 

first order of two infinitesimal parameters (  and  ) for 

hydrogen-like atoms (He+, Li
2+

, Be3+) corresponding to 𝑗 =
𝑙 + 1/2and 𝑗 = 𝑙 − 1/2 as: 

 

𝐸𝑠𝑜−0
𝑢−𝑒𝑠𝑐 = 𝛽𝐵0𝑙

2 𝑘+ {𝛩𝑇(0, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
},            (61) 

and              

𝐸𝑠𝑜−0
𝑑−𝑒𝑠𝑐 = 𝛽𝐵0𝑙

2 𝑘− {𝛩𝑇(0, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
},            (62) 

with 

𝑇(0, 𝑙, 𝛼, 𝐴, 𝑔) =∑𝑇𝑖

2

𝑖=1

(0, 𝑙, 𝛼, 𝐴, 𝑔). 

 

For the first excited state(𝑛 = 1, 𝑙), the Jacobi polynomial 

𝑃1
(𝛼,𝛽)(𝑠) = 𝛼 + 1 + (𝛼 + 𝛽 + 2)

𝑠−1

2
, which gives  

𝑃1

(2√𝜀1𝑙
2 ,2𝐺𝑙−1)

(𝑠) =  𝑔1𝑙 + ℎ1𝑙(1 − 𝑠) with 𝑔1𝑙 = 2√𝜀1𝑙
2 +

1, ℎ1𝑙 = √𝜀1𝑙
2 + 𝐺𝑙 + 1/2 and  𝜀1𝑙

2 = −(
𝜇𝐸1𝑙

2𝛼2
−
𝑙(𝑙+1)

12
) while 

lE1  denoting the energy of the first excited state for the 

standard energy-dependent screened Coulomb potential: 

 

𝐸1𝑙 = −
𝛼2

2𝜇

[
 
 
 (
3

2
+√

1

4
+ 𝑙(𝑙 + 1) −

𝜇𝐴(1+𝑔𝐸𝑛𝑙)

𝛼(3/2+√1/4+𝑙(𝑙+1))
)

2

−
𝑙(𝑙+1)

3 ]
 
 
 
. 

(63) 

 

Thus, the 2 factors in Eqs. (49) and (50) reduce to the 

following simple form: 
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{
 

 
𝑇1(1, 𝑙, 𝛼, 𝐴, 𝑔) ≡ 𝑇11(1, 𝑙, 𝛼, 𝐴, 𝑔) + 𝑇12(1, 𝑙, 𝛼, 𝐴, 𝑔)

+𝑇13(1, 𝑙, 𝛼, 𝐴, 𝑔),

𝑇2(1, 𝑙, 𝛼, 𝐴, 𝑔)  ≡ 𝑇21(1, 𝑙, 𝛼, 𝐴, 𝑔) + 𝑇22(1, 𝑙, 𝛼, 𝐴, 𝑔)

+𝑇23(1, 𝑙, 𝛼, 𝐴, 𝑔).

    

(64) 

Where the six elements are given in the following form: 

 

{
 
 
 
 

 
 
 
 𝑇11 =

−8𝛼𝐴(1+𝑔𝐸1𝑙)

2
2𝐺𝑙
2+2√𝜀1𝑙

2 +1
𝛼

𝑔1𝑙
2 ∫

−1

+1

(1 − 𝑠)
2√𝜀1𝑙

2 +1
(1 + 𝑠)2𝐺𝑙

2−3𝑑𝑠,

𝑇12 =
−8𝛼𝐴(1+𝑔𝐸1𝑙)

2
2𝐺𝑙
2+2√𝜀1𝑙

2

𝛼

𝑔1𝑙
2 ∫

−1

+1

(1 − 𝑠)
2√𝜀1𝑙

2 +2
(1 + 𝑠)2𝐺𝑙

2−3𝑑𝑠,

𝑇13 =
−8𝛼𝐴(1+𝑔𝐸1𝑙)

2
2𝐺𝑙
2+2√𝜀1𝑙

2 +1
𝛼

𝑔1𝑙
2 ∫

−1

+1

(1 − 𝑠)
2√𝜀1𝑙

2 +3
(1 + 𝑠)2𝐺𝑙

2−3𝑑𝑠,

  

(65) 

and                   

{
 
 
 
 

 
 
 
 𝑇21 =

−2√2𝐴(1+𝑔𝐸1𝑙)

2
2𝐺𝑙
2+2√𝜀1𝑙

2 +1
𝛼

𝑔1𝑙
2 ∫

−1

+1

(1 − 𝑠)
2√𝜀1𝑙

2 +
1

2(1 + 𝑠)2𝐺𝑙
2−2𝑑𝑠,

𝑇22 =
−2√2𝐴(1+𝑔𝐸1𝑙)

2
2𝐺𝑙
2+2√𝜀1𝑙

2

𝛼

𝑔1𝑙
2 ∫

−1

+1

(1 − 𝑠)
2√𝜀1𝑙

2 +
3

2(1 + 𝑠)2𝐺𝑙
2−2𝑑𝑠,

𝑇23 =
−2√2𝐴(1+𝑔𝐸1𝑙)

2
2𝐺𝑙
2+2√𝜀1𝑙

2 +1
𝛼

𝑔1𝑙
2 ∫

−1

+1

(1 − 𝑠)
2√𝜀1𝑙

2 +
5

2(1 + 𝑠)2𝐺𝑙
2−2𝑑𝑠.

 

(66) 

 

We apply the integral in Eq. (56) to obtain the following 

results: 

 

{
 
 
 
 
 

 
 
 
 
 
𝑇11 = −2𝐴(1 + 𝑔𝐸1𝑙)

𝑔1𝑙
2 𝛤(2√𝜀1𝑙

2 +2)𝛤(2𝐺𝑙
2−2)

(2√𝜀1𝑙
2 +2𝐺𝑙

2−1)𝛤(2√𝜀1𝑙
2 +2𝐺𝑙

2−1)

,

𝑇12 = −8𝐴(1 + 𝑔𝐸1𝑙)
𝑔1𝑙
2 𝛤(2√𝜀1𝑙

2 +3)𝛤(2𝐺𝑙
2−2)

(2√𝜀1𝑙
2 +2𝐺𝑙

2)𝛤(2√𝜀1𝑙
2 +2𝐺𝑙

2)

,

𝑇13 = −8𝛼𝐴(1 + 𝑔𝐸1𝑙)
𝑔1𝑙
2 𝛤(2√𝜀1𝑙

2 +3+1)𝛤(2𝐺𝑙
2−2)

(2√𝜀1𝑙
2 +2𝐺𝑙

2+1)𝛤(2√𝜀1𝑙
2 +2𝐺𝑙

2+1)

,

  

(67) 

and 

 

{
 
 
 
 
 

 
 
 
 
 
𝑇21 =

−𝐴(1+𝑔𝐸1𝑙)

𝛼

𝑔1𝑙
2 𝛤(2√𝜀1𝑙

2 +
3

2
)𝛤(2𝐺𝑙

2−1)

(2√𝜀1𝑙
2 +2𝐺𝑙

2−
1

2
)𝛤(2√𝜀1𝑙

2 +2𝐺𝑙
2−

1

2
)

,

𝑇22 =
−4𝐴(1+𝑔𝐸1𝑙)

𝛼

𝑔1𝑙
2 𝛤(2√𝜀1𝑙

2 +5/2)𝛤(2𝐺𝑙
2−1)

(2√𝜀1𝑙
2 +2𝐺𝑙

2+1/2)𝛤(2√𝜀1𝑙
2 +2𝐺𝑙

2+1/2)

𝑇23 =
−2𝐴(1+𝑔𝐸1𝑙)

𝛼

𝑔1𝑙
2 𝛤(2√𝜀1𝑙

2 +
7

2
)𝛤(2𝐺𝑙

2−1)

(2√𝜀1𝑙
2 +2𝐺𝑙

2+
1

2
)𝛤(2√𝜀1𝑙

2 +2𝐺𝑙
2+

1

2
)

.

,    (68) 

 

This allows us to obtain non-relativistic energy corrections 

for the first excited state 𝐸𝑠𝑜−1
𝑢−𝑒𝑠𝑐(𝑘+, 1, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑠) and 

𝐸𝑠𝑜−1
𝑑−𝑒𝑠𝑐(𝑘−, 1, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑠) at the first order of two 

infinitesimal parameters (𝛩 and 𝜃) for the hydrogen-like 

atoms (He+, Li
2+

, Be3+) corresponding to 𝑗 = 𝑙 +
1

2
 and 𝑗 =

𝑙 −
1

2
  under improved energy-dependent screened Coulomb 

potential, in 3D-NCPS symmetries as: 

 

𝐸𝑠𝑜−1
𝑢−𝑒𝑠𝑐 = 𝛽𝐵1𝑙

2 𝑘+ {𝛩𝑇(1, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
}  ,         (69) 

and  

 

𝐸𝑠𝑜−1
𝑑−𝑒𝑠𝑐 = 𝛽𝐵1𝑙

2 𝑘− {𝛩𝑇(1, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
},                (70) 

 

with 

𝑇(1, 𝑙, 𝛼, 𝐴, 𝑔) = ∑ 𝑇𝑖
2
𝑖=1 (1, 𝑙, 𝛼, 𝐴, 𝑔). 

 

Allow us to generalize this procedure to get non-relativistic 

energy corrections 𝐸𝑠𝑜−𝑛
𝑢−𝑒𝑠𝑐(𝑘+, 𝑛, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑠)  and 

𝐸𝑠𝑜−𝑛
𝑑−𝑒𝑠𝑐(𝑘−, 𝑛, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑠) for any excited state (n, l), the 

non-relativistic energy corrections at the first order of two 

infinitesimal parameters (𝛩 and 𝜃) for the hydrogen-like  

atoms ( He+, Li
2+

, Be3+) corresponding to 𝑗 = 𝑙 +
1

2
  and 𝑗 =

𝑙 − 1/2 under improved energy depended screened Coulomb 

potential, in 3D-NCPS symmetries as follows: 

 

𝐸𝑠𝑜−𝑛
𝑢−𝑒𝑠𝑐 = 𝛽𝐵𝑛𝑙

2 𝑘+ {𝛩𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
},         (71) 

 

and 

 

𝐸𝑠𝑜−𝑛
𝑑−𝑒𝑠𝑐 = 𝛽𝐵𝑛𝑙

2 𝑘− {𝛩𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
},         (72)  

 

with 

 

𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) = ∑ 𝑇𝑖
2
𝑖=1 (𝑛, 𝑙, 𝛼, 𝐴, 𝑔). 

 

This allows us to deduce the following important physical 

results for hydrogen-like atoms (He+, Li
2+

, Be3+) under 

improved energy-dependent screened Coulomb potential: 

 

𝐻so
𝑒𝑠𝑐(𝑟, 𝛩, �̄�)

𝑅𝑛𝑙(𝑟)

𝑟
𝑌𝑙
𝑚(𝜃, 𝜙) = 

{
𝐸𝑠𝑜−𝑛
𝑢−𝑒𝑠𝑐(𝑘+, 𝑛, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑠)

𝑅𝑛𝑙(𝑟)

𝑟
𝑌𝑙
𝑚(𝜃, 𝜙) for 𝑗 = 𝑙 + 1/2

𝐸𝑠𝑜−𝑛
𝑑−𝑒𝑠𝑐(𝑘+, 𝑛, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑠)

𝑅𝑛𝑙(𝑟)

𝑟
𝑌𝑙
𝑚(𝜃, 𝜙) for 𝑗 = 𝑙 − 1/2

 

(73) 
 

C. The bound-state solution of the modified Zeeman 

effect for the improved energy depended on the screened 

Coulomb potential 

 

In this subsection, having obtained the energy spectrum 
escu
nsoE 

   and 𝐸𝑠𝑜−𝑛
𝑑−𝑒𝑠𝑐  which is self-produced from the perturbed 

Hamiltonian operator 𝐻so
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) corresponding to (𝑗 = 𝑙 ±

1/2) at first order of two parameters (  and  ) for 

hydrogen-like atoms for ( ln, ) states. For our purposes, we 
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are interested in finding a new second automatically 

important symmetry for improved energy-dependent 

screened Coulomb potential. This physical phenomenon is 

induced automatically by the influence of a self-uniform 

magnetic field ℵ
→
 if we make the following two simultaneous 

transformations to ensure that previous calculations are not 

repeated: 

(𝛩, 𝜃) → (𝜆, 𝜎)ℵ.                              (74) 

 

Here 𝜆 and 𝜎 are just two infinitesimal real proportional 

constants so that the following physical units are identical 

[𝜆][ℵ] ≡ [𝛩] and [𝜎][ℵ] ≡ [𝜃]. We choose the magnetic 

field to simplify the mathematical calculations without 

compromising the physical content ze


. Then we 

transform the spin-orbit coupling to the new physical 

phenomena as follows: 

 

{−
𝐴(1 + 𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

2𝑟2
(𝛼 +

1

𝑟
)𝛩
→

+
𝜃
→

2𝜇
} 𝐋
→

→ 

{−𝜆
𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

2𝑟2
(𝛼 +

1

𝑟
) +

𝜎

2𝜇
} ℵ𝐿𝑧.                   (75) 

 

This allowed deriving the improved magnetic Hamiltonian 

operator 𝐻𝑧
𝑒𝑠𝑐(𝑟, 𝜆, 𝜎) for previous hydrogen-like atoms 

under improved energy depended screened Coulomb 

potential in local 3D-NCPS symmetries as: 

 

𝐻𝑧
𝑒𝑠𝑐(𝑟, 𝜆, 𝜎) = {−𝜆

𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

2𝑟2
(𝛼 +

1

𝑟
) +

𝜎

2𝜇
} ℵ𝑚𝑜𝑑

𝑧 . 

(76) 

Here ℵ𝑧 ≡ −𝑆
→

ℵ
→

 denote to the usual Zeeman effect in 

commutative quantum mechanics, while ℵ𝑚𝑜𝑑
𝑧  ≡ ℵ

→

𝐽
→

− ℵ𝑧 is 

the improved Zeeman effect in 3D-NCPS symmetries. To 

obtain the exact new magnetic modifications of energy for 

the ground state, the first excited state and (𝑛, 𝑙, 𝑚)𝑡ℎ excited 

states of hydrogen-like atoms ( He+, Li
2+

, Be3+) under 

improved energy depended on screened Coulomb potential 

𝐸𝑚−0
𝑒𝑠𝑐 (0, 𝛼, 𝐴, 𝑔,𝑚, 𝑠), 𝐸𝑚−1

𝑒𝑠𝑐 (1, 𝛼, 𝐴, 𝑔,𝑚, 𝑠) and 𝐸𝑚−𝑛
𝑒𝑠𝑐 (𝑛 ≥

2, 𝛼, 𝐴, 𝑔,𝑚, 𝑠) we just replace (𝑘+(𝑗, 𝑙, 𝑠) and (𝛩, 𝜃)) in Eqs. 

(61), (69), and (71) by the following parameters (𝑚 

and(𝜆, 𝜎)ℵ), respectively: 

𝐸𝑚−1
𝑒𝑠𝑐 (0, 𝛼, 𝐴, 𝑔,𝑚, 𝑠) = 𝛽𝐵0𝑙

2 ℵ(𝜆𝑇(0, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜎

2𝜇
)𝑚,      

(77) 

𝐸𝑚−1
𝑒𝑠𝑐 (1, 𝛼, 𝐴, 𝑔,𝑚, 𝑠) = 𝛽𝐵1𝑙

2 ℵ(𝜆𝑇(1, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜎

2𝜇
)𝑚,    

(78)  

and  

𝐸𝑚−𝑛
𝑒𝑠𝑐 (𝑛, 𝛼, 𝐴, 𝑔,𝑚, 𝑠) = 𝛽𝐵𝑛𝑙

2 ℵ (𝜆𝑇(𝑛, 𝛼, 𝐴, 𝑙) +
𝜎

2𝜇
)𝑚. 

(79) 

The physical values of 𝑚 are confined by the interval   −𝑙 ≤
𝑚 ≤ +𝑙, which allows us to fix (2𝑙 + 1) values for discreet 

numbers m . It should be noted that the results obtained in 

Eqs. (75), (76) and (77) can obtain it by direct calculation by 

applying the formula: 

𝐸𝑚−𝑛
𝑒𝑠𝑐 = ⟨𝛹|𝐻𝑚

𝑒𝑠𝑐(𝑟, 𝜆, 𝜎)|𝛹⟩.                       (80) 

That takes the following explicit relation: 

𝐸𝑚−𝑛
𝑒𝑠𝑐 = 𝐵𝑛𝑙

2 𝑚ℵ∫
0

+∞

𝑠
2√𝜀𝑛𝑙

2

(1 − 𝑠)2𝐺𝑙
2
[𝑃𝑛

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(1 −

2𝑠)]

2

{−𝐴(1 + 𝑔𝐸𝑛𝑙) (
4𝛼3𝑠2

(1−𝑠)3
+

2𝛼2𝑠
3
2

(1−𝑠)2
)𝜆 +

𝜎

2𝜇
}𝑑𝑟. (81) 

We end this subsection by addressing the important result: 

 

𝐻𝑧
𝑒𝑠𝑐(𝑟, 𝜆, 𝜎)𝛹𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝛽𝐵𝑛𝑙

2 ℵ, 

{𝜆𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜎

2𝜇
}𝑚𝛹𝑛𝑙𝑚(𝑟, 𝜃, 𝜙).               (82) 

 

D. Bound state solution of perturbed Fermi gas for 

improved energy depended screened Coulomb potential 

 

For our purposes, we are interested in finding a new, third-

automatic, important symmetry for improved energy-

dependent screened Coulomb potential at zero temperature in 

3D-NCPS symmetries. This physical phenomenon is induced 

automatically by the influence of a perturbed Hamiltonian 

operator 𝐻per
𝑒𝑠𝑐(𝑟) which we have seen in Eq. (32), we 

discover these important physical phenomena when our 

studied system consists of 𝑁 non-interacting is considered as 

a Fermi gas undergoing rotation with angular velocity 𝛀
→

, if 

we make the following two simultaneous transformations to 

ensure that previous calculations are not repeated: 

 

(𝛩
→

, 𝜃
→

) → (𝜒, 𝜒)𝛀
→

   ,                       (83) 

 

here (𝜒, 𝜒) are two infinitesimal real proportional constants, 

and to simplify the calculations without compromising 

physical content, we choose 𝛺
→

= 𝛺𝑒𝑧.  Thus, we transform 

the spin-orbit coupling to the new physical phenomena as 

follows: 

 

{−
𝐴(1 + 𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

2𝑟2
(𝛼 +

1

𝑟
)𝛩
→

+
𝜃
→

2𝜇
} 𝐋
→

→ 

 

{−𝜒
𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

2𝑟2
(𝛼 +

1

𝑟
) +

𝜒

2𝜇
}𝛺𝐿𝑧 .           (84) 

 

This allowed us to obtain the new modified Hamiltonian 

operator 𝐻𝑓
𝑒𝑠𝑐(𝑟, 𝜒, 𝜒) for previous hydrogen-like atoms 
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under improved energy-dependent screened Coulomb 

potential in local 3D-NCPS symmetries as: 

 

𝐻𝑓
𝑒𝑠𝑐(𝑟, 𝜒, 𝜒) = {−𝜒

𝐴(1+𝑔𝐸𝑛𝑙) 𝑒𝑥𝑝(−𝛼𝑟)

2𝑟2
(𝛼 +

1

𝑟
) +

𝜒

2𝜇
}𝛺𝐿𝑧. 

(85) 

 

To obtain the exact NC Fermi gas modifications of energy for 

the ground state, the first excited state and (𝑛, 𝑙, 𝑚)𝑡ℎ excited 

states of Fermi gas under improved energy depended on 

screened Coulomb potential 𝐸𝑚−0
𝑓−𝑒𝑠𝑐(0, 𝛼, 𝐴, 𝑔,𝑚, 𝑠), 

𝐸𝑚−1
𝑓−𝑒𝑠𝑐(1, 𝛼, 𝐴, 𝑔,𝑚, 𝑠) and 𝐸𝑚−𝑛

𝑓−𝑒𝑠𝑐(𝑛 ≥ 2, 𝛼, 𝐴, 𝑔,𝑚, 𝑠) we 

just replace 𝑘+(𝑗, 𝑙, 𝑠)/𝑘−(𝑗, 𝑙, 𝑠) and  ,  in Eqs. (61), 

(69), and (71) by the following parameters  m  and (𝜒, 𝜒)𝛺, 

respectively: 

 

𝐸𝑚−0
𝑓−𝑒𝑠𝑐

= 𝛽𝐵0𝑙
2 (𝜒𝑇(0, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜒

2𝜇
)𝛺𝑚,     (86) 

𝐸𝑚−1
𝑓−𝑒𝑠𝑐

= 𝛽𝐵1𝑙
2 (𝜒𝑇(1, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜒

2𝜇
)𝛺𝑚,     (87) 

and  

𝐸𝑚−𝑛
𝑓−𝑒𝑠𝑐

= 𝛽𝐵𝑛𝑙
2 (𝜒𝑇(𝑛, 𝛼, 𝐴, 𝑙, 𝑔) +

𝜒

2𝜇
)𝛺𝑚.     (88) 

It should be noted that the results obtained in Eq. (88) can 

find it by direct calculation by applying the formula: 

𝐸𝑚−𝑛
𝑓−𝑒𝑠𝑐

= ⟨𝛹|𝐻𝑓
𝑒𝑠𝑐(𝑟, 𝜒, 𝜒)|𝛹⟩,                 (89) 

that takes the following explicit relation: 

𝐸𝑚−𝑛
𝑓−𝑒𝑠𝑐

= 𝐵𝑛𝑙
2 𝑚𝛺∫

0

+∞

𝑠
2√𝜀𝑛𝑙

2

(1 − 𝑠)2𝐺𝑙
2
 

[𝑃𝑛

(2√𝜀𝑛𝑙
2 ,2𝐺𝑙−1)

(1 − 2𝑠)]

2

 

{−𝐴(1 + 𝑔𝐸𝑛𝑙) (
4𝛼3𝑠2

(1 − 𝑠)3
+
2𝛼2𝑠3/2

(1 − 𝑠)2
)𝜒 +

𝜒

2𝜇
}𝑑𝑟. (90) 

 

We end this subsection by addressing the critical result: 

 

𝐻𝑓
𝑒𝑠𝑐(𝑟, 𝜒, 𝜒)𝛹𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝛽𝐵𝑛𝑙

2 𝛺 

{𝜒𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜒

2𝜇
}𝑚𝛹𝑛𝑙𝑚(𝑟, 𝜃, 𝜙).               (91) 

 

It is worth mentioning that Bencheikh et al. [91] studied 

rotating isotropic and anisotropic harmonically confined 

ultra-cold Fermi gas in a two and three-dimensional space at 

zero temperature but in this study, the rotational term was 

added to the Hamiltonian operator, in contrast to our case, 

where this rotational term (−𝜒
𝐴(1+𝑔𝐸𝑛𝑙)𝑒𝑥𝑝(−𝛼𝑟)

2𝑟2
(𝛼 +

1

𝑟
)𝛺�̂�𝑧) with the corresponding kinetic operator 

𝜒

2𝜇
𝛺�̂�𝑧 

appears automatically due to the large symmetries resulting 

from the deformation of the phase space. It is important to 

note that perturbation theory cannot be utilized to find 

corrections of the second order (𝛩2 and  𝜃
2
) because we have 

only employed corrections of the first order of infinitesimal 

non-commutative parameters (𝛩 and 𝜃). 

 

 

VI. RESULTS AND DISCUSSION  

In the previous subsections, we obtained the solution of the 

deformed Schrödinger equation for improved energy 

depended screened Coulomb potential, which is determined 

in Eq. (1) by using the generalized Bopp’s shift method and 

standard perturbation theory. The energy eigenvalues are 

calculated in 3D-NCPS symmetries. The improved 

eigenenergies for the ground state, first excited state, and 

(𝑛, 𝑙, 𝑚)𝑡ℎ excited states of hydrogen-like atoms (He+, Li
2+

, 

Be3+) under improved energy depended screened Coulomb's 

potential:  

𝐸𝑛𝑐−0
𝑒𝑠𝑐 (0, 𝑘+, 𝑘−, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑚, 𝑠), 

𝐸𝑛𝑐−1
𝑒𝑠𝑐 (1, 𝑘+, 𝑘−, 𝛼, 𝐴, 𝑗𝑔, , 𝑙, 𝑚, 𝑠), 

and 

𝐸𝑛𝑐−𝑛
𝑒𝑠𝑐 (𝑛, 𝑘+, 𝑘−, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑚, 𝑠), 

with spin-1/2 are obtained in this paper based on our original 

results presented in Eqs. (61), (62), (69), (70), (71), (72), (77), 

(78), (79), (86), (87), and (88), in addition to the ordinary 

energy 𝐸𝑛𝑙 for improved energy-depended screened Coulomb 

potential model, which is presented in Eq. (17) take the form: 

𝐸𝑛𝑐−0
𝑒𝑠𝑐 (0, 𝑙, 𝛼, 𝐴, 𝑔) = 𝐸0𝑙 + 𝛽𝐵0𝑙

2  , 

{
 
 

 
 ℵ(𝜆𝑇(0, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜎

2𝜇
)𝑚 + (𝜒𝑇(0, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜒

2𝜇
)𝛺𝑚

+𝛽 (𝛩𝑇(0, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
) {
𝑘+  for 𝑗 = 𝑙 + 1/2
𝑘−  for 𝑗 = 𝑙 − 1/2 }

 
 

 
 

 

(92) 

and 

𝐸𝑛𝑐−1
𝑒𝑠𝑐 (1, 𝑙, 𝛼, 𝐴, 𝑔) = 𝐸1𝑙 + 𝛽𝐵1𝑙

2  

{

ℵ(𝜆𝑇(1, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜎

2𝜇
)𝑚 + (𝜒𝑇(1, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜒

2𝜇
)𝛺𝑚

+𝛽 (𝛩𝑇(1, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
) {
𝑘+  for 𝑗 = 𝑙 + 1/2
𝑘−  for 𝑗 = 𝑙 − 1/2

}

(93) 
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here lE0  and lE1 are given previously by Eqs. (57) and (63). 

Thus, the generalized formula of energy spectra can be 

expressed as follows: 

𝐸𝑛𝑐−𝑛
𝑒𝑠𝑐 (𝑛, 𝑘+, 𝑘−, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑚, 𝑠) = −

𝛼2

2𝜇
 

[(𝑛 + 1/2 + √1/4 + 𝑙(𝑙 + 1) −
𝜇𝐴(1+𝑔𝐸𝑛𝑙)

𝛼(𝑛+1/2+√1/4+𝑙(𝑙+1))
)
2

−

𝑙(𝑙+1)

3
] + 𝛽𝐵𝑛𝑙

2 ((𝜆𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜎

2𝜇
)ℵ𝑚++(𝜒𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜒

2𝜇
)𝛺𝑚 +

(𝛩𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
)) {
𝑘+  for 𝑗 = 𝑙 + 1/2
𝑘−  for 𝑗 = 𝑙 − 1/2

 (94) 

Thus, the total energy 𝐸𝑛𝑐−𝑛
𝑒𝑠𝑐 (𝑛, 𝑘+, 𝑘−, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑚, 𝑠) for 

improved energy-dependent screened Coulomb potential in 

3D-NCPS symmetries, is the sum of the ordinary part of the 

energy 
nlE  and the two corrections of the energy (𝐸𝑠𝑜−𝑛

𝑢−𝑒𝑠𝑐 

,𝐸𝑠𝑜−𝑛
𝑑−𝑒𝑠𝑐) for 𝑗 = 𝑙 ± 1/2 and 𝐸𝑚−𝑛

𝑒𝑠𝑐 (𝑛, 𝛼, 𝐴, 𝑔, 𝑗,𝑚, 𝑠). This is 

one of the main objectives of our research. Finally, we end 

this section by introducing the important result of this work 

as follows: 

(𝐻esc(𝑟) + 𝐻𝑠𝑜
𝑒𝑠𝑐(𝑟, 𝛩, �̄�) + 𝐻𝑧

𝑒𝑠𝑐(𝑟, 𝜆, 𝜎))𝛹𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = (𝐸𝑛𝑙 +

𝐵𝑛𝑙
2 𝛽ℵ (𝜆𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜎

2𝜇
)𝑚++ 𝛽𝐵0𝑙

2 (𝜒𝑇(0, 𝑙, 𝛼, 𝐴, 𝑔) +

𝜒

2𝜇
)𝛺𝑚 + 

𝐵𝑛𝑙
2 {

𝑘+ (𝛩𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
)     for 𝑗 = 𝑙 + 1/2

𝑘− (𝛩𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔) +
𝜃

2𝜇
)     for 𝑗 = 𝑙 − 1/2

)𝛹𝑛𝑙𝑚(𝑟, 𝜃, 𝜙). 

(95) 

This is one of the major drivers for this paper's topic. It is 

clear, that the obtained eigenvalues of energies are real, 

which allows us to consider the NC diagonal Hamiltonian 

𝐻𝑛𝑐
𝑒𝑠𝑐(𝑟, 𝛩, 𝜃, 𝜆, 𝜎) as a Hermitian operator. Furthermore, and 

regarding the previously obtained results presented in Eqs. 

(31), (35), (74), and (89), the global Hamiltonian operator, at 

first order in (  and  ), with improved energy-dependent 

screened Coulomb potential for hydrogen-like atoms for (n, 

l,m)th states takes the form as:  

 

     

   

 

,,,,                            

,,, ,,,,

rHrH

rHxpHr

esc
f

esc
z

esc
soesc

esc
ncH



 
       (96) 

 

where 𝐻𝑒𝑠𝑐(𝑝𝜇 , 𝑥𝜈) present the Hamiltonian operator for 

standard energy depended screened Coulomb potential while 

𝐻𝑠𝑜
𝑒𝑠𝑐(𝑟, 𝛩, �̄�), 𝐻𝑧

𝑒𝑠𝑐(𝑟, 𝜆, 𝜎) and 𝐻𝑓
𝑒𝑠𝑐(𝑟, 𝜒, 𝜒) are the 

perturbed spin-orbit Hamiltonian, modified Zeeman, and 

perturbed Fermi gas operators, respectively. This is the 

equation for Hydrogen-like atoms under the influence of 

improved energy-dependent screened Coulomb potential 

interactions. It should be noted that this treatment considers 

only first-order terms in either (  or  ). It is evident to 

consider that the atomic quantum number m can take (2l + 1) 

values and we have also two values for 𝑗 = 𝑙 ±
1

2
 

corresponding to up and down polarities, thus, every state of 

energy, in the usual three-dimensional space, for improved 

energy-dependent screened Coulomb potential will be 

2(2𝑙 + 1) sub-state in 3D-NCPS symmetries. Thus, the total 

complete degeneracy of the new version of the energy level 

of the improved energy-dependent screened Coulomb 

potential is obtained as a sum of all allowed values of l. Total 

degeneracy is thus, 

 

∑ 2(2𝑙 + 1)𝑛−1
𝑙=0 ≡ 2𝑛2⏟              

Modified energy depended screened Coulomb's potential

              (97) 

 

The effect resulting from the topological deformations of 

phase-space led to the splitting of energy levels to become a 

doubling of their number in the framework of quantum 

mechanics known in the literature: 

 

∑ (2𝑙 + 1)𝑛−1
𝑙=0 ≡ 𝑛2⏟            

 Energy depended screened Coulomb's potential

                    (98) 

 

This means that the energy levels shown with the 3D-NCPS 

treatment appear more detailed and more straightforward 

compared to similar energy levels obtained from QM 

treatment because the total complete degeneracy of obtained 

energy level becomes double in 3D-NCPS symmetries.  Now, 

we can deduce the energy levels 

𝐸𝑛𝑐−𝑛𝑎
𝑒𝑠𝑐 (𝑛, 𝑘, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑚, 𝑠) ≡ 𝐸𝑛𝑐−𝑛𝑎

𝑒𝑠𝑐  of neutral atoms (the 

atoms that possess many external electrons equal to the 

number of protons in the nucleus) under improved energy-

dependent screened Coulomb potential such as Sodium (11p 

and 11e), carbon, and gold (79 p and 79 e) atoms, which are 

known by their chemical symbols ( Na , C and Au ) 

respectively. We just replaced it 𝑘+(𝑗, 𝑙, 𝑠) with the new value 

𝑘(𝑗, 𝑙, 𝑠) which is determined by the following expression: 

 

𝑘(𝑗, 𝑙, 𝑠) ≡ 𝑗(𝑗 + 1) + 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1), 
 

in Eq. (94) to ensure that previous calculations are not 

reputed: 

𝐸𝑛𝑐−𝑛𝑎
𝑒𝑠𝑐 = −

𝛼2

2𝜇
[(𝑛 +

1

2
+√

1

4
+ 𝑙(𝑙 + 1) −

𝜇𝐴(1+𝑔𝐸𝑛𝑙)

𝛼(𝑛+
1

2
+√

1

4
+𝑙(𝑙+1))

)

2

−
𝑙(𝑙+1)

3
]+𝛽𝐵𝑛𝑙

2 [𝑇(𝑛, 𝑙, 𝛼, 𝐴, 𝑔)(𝜆ℵ𝑚 +

𝑘(𝑗, 𝑙, 𝑠)𝛩)  +
1

2𝜇
(𝜎ℵ𝑚 + 𝑘(𝑗, 𝑙, 𝑠)𝜃)].        (99) 
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V. CONCLUSIONS  
 

From a modified version of the Schrödinger equation DSE 

interacting with improved energy-depended screened 

Coulomb potential inspired in symmetries of non-

commutative quantum mechanics, we have addressed the 

problem of the hydrogen-like atoms (He+, Li
2+

, Be3+) and 

neutral atoms ( Na , C  and Au ). The main purpose of this 

manuscript is to apply the improved approximation scheme 

to the centrifugal term for any l-states using the generalized 

Bopp’s, shift method and standard perturbation theory in 3D-

NCPS symmetries to find the theoretical solution of DSE. We 

reached the following results: 

 

 We have obtained the new version of the energy 

eigenvalues of Hydrogen-like atoms such as He+, 

Li
2+

and Be3+ under improved energy-dependent 

screened Coulomb potential 

(𝐸𝑛𝑐−0
𝑒𝑠𝑐 (0, 𝑘+, 𝑘−, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑚, 𝑠), 

𝐸𝑛𝑐−1
𝑒𝑠𝑐 (1, 𝑘+, 𝑘−, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑚, 𝑠) and 

𝐸𝑛𝑐−𝑛
𝑒𝑠𝑐 (𝑛, 𝑘+, 𝑘−, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑚, 𝑠)) with spin-1/2 for the 

ground state, the first excited state, and (𝑛, 𝑙, 𝑚)𝑡ℎ 

excited states. The energy eigenvalues depend on 

(𝛼, 𝐴, 𝑔) parameters and the discrete atomic quantum 

numbers (𝑗, 𝑙, 𝑚, 𝑠) and two infinitesimal 

parameters(𝛩, 𝜃), which are induced by (position-

position and phase-phase) non-commutativity 

properties (see Eqs. (92), (93), and (94)) 

  The energy eigenvalues of the bound states 

𝐸𝑛𝑐
𝑒𝑠𝑐(𝑛, 𝑘, 𝛼, 𝐴, 𝑔, 𝑗, 𝑙, 𝑚, 𝑠) of neutral atoms (22Na, 12Ca 

and 158Au) under improved energy-dependent screened 

Coulomb potential such as (22Na, 12Ca and 158Au) atoms, 

with spin-s for (𝑛, 𝑙, 𝑚)𝑡ℎ excited states obtained as a 

function of the parameters of standard improved energy 

depended on the screened Coulomb potential (𝛼, 𝐴, 𝑔) 

and the discrete atomic quantum numbers (𝑗, 𝑙, 𝑚, 𝑠) 
(see Eq. (98)),  

 The modified version of the Hamiltonian operator 

𝐻nc
𝑒𝑠𝑐(𝑟, 𝛩, �̄�)in 3D-NCPS symmetries is the sum of the 

Hamiltonian operator of standard improved energy-

dependent screened Coulomb potential 𝐻esc(𝑟)and three 

operators, the first one is the modified spin-orbit 

interaction 𝐻so
𝑒𝑠𝑐(𝑟, 𝛩, �̄�)while the second is the 

modified Zeeman operator 𝐻𝑧
𝑒𝑠𝑐(𝑟, 𝜆, 𝜎)  for the 

hydrogen-like atoms and neutral atoms while the third 

term 𝐻𝑓
𝑒𝑠𝑐(𝑟, 𝜒, 𝜒) corresponds to the Fermi gas at zero 

temperature. 

We observe that the behavior of the non-relativistic physical 

or chemical system interacting with improved energy-

dependent screened Coulomb in 3D-NCPS symmetries, 

remains similar to that in the relativistic case, where the spin 

effect is clearly shown spontaneously. Furthermore, when the 

two parameters (𝛩, 𝜃) are reduced to the limited 

values(0,0). The non-relativistic standard's results improved 

energy-dependent screened Coulomb potential recovered in 

Ref. [26]. Finally, this study has many applications in 

different areas of physics and chemistry such as atomic 

physics (He+, Li
2+, Be3+) and molecular physics (22Na, 12Ca, 

158Au) amongst others. In our view, this behavior 

significantly impacts the development of atomic and 

hydrogenic-like atom devices. The results of this research 

agree with those of previous comparable studies. 
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