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Abstract 
This paper is aimed at university students taking courses in exact sciences. Despite its importance, in introductory 

subjects in undergraduate courses in exact sciences, the demonstration of Maxwell-Boltzmann’s speed distribution law 

is not performed, only its final expression is presented. In order to fill this deficiency, in this work we seek to show in 

detail, in a very didactic way, the demonstration of such a law. For this purpose, the kinetic theory of gases is initially 

introduced before demonstrating the Maxwell-Boltzmann velocity distribution law. It is also commented on the good 

agreement of the Maxwell-Boltzmann speed distribution law with experimental results, and its applicability limit with 

regard to relativistic speeds. 

 

Keywords: Gas kinetics, Maxwell-Boltzmann distribution, Mean square velocity. 

 

Resumo 
Este artigo é destinado a estudantes universitários cursando disciplinas de ciências exatas. Apesar de sua importância, 

nas disciplinas introdutórias dos cursos de graduação em ciências exatas, não é realizada a demonstração da lei de 

distribuição de velocidades de Maxwell-Boltzmann, apenas é apresentada sua expressão final. Para suprir esta 

deficiência, neste trabalho procuramos mostrar detalhadamente, de forma bastante didática, a demonstração de tal lei. 

Para tanto, a teoria cinética dos gases é inicialmente introduzida antes da demonstração da lei de distribuição de 

velocidades de Maxwell-Boltzmann. Também é comentado a boa concordância da lei de distribuição de velocidades 

de Maxwell-Boltzmann com resultados experimentais, e seu limite de aplicabilidade no que diz respeito a velocidades 

relativísticas. 
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I. INTRODUCTION 
 

The temperature of any physical system is the result of the 

movement of the molecules and atoms that make up the 

system. These small parts of matter have a range of different 

velocities and the velocities of each particle constantly 

varies due to collisions with each other. Such relative 

velocity distribution specifies the fraction for each velocity 

range as a function of the system temperature. This 

distribution is named after its creators: the British physicist 

and mathematician James Clerk Maxwell (1831-1879) and 

the Austrian physicist Ludwig Eduard Boltzmann (1844-

1906). 

At the beginning of the second half of the 19th century, 

around 1859, Maxwell carried out studies on how the 

velocity modules of gas molecules were distributed in 

thermal equilibrium and in 1860 he demonstrated and 

published that the velocities of gas molecules are distributed 

according to the law of error distribution, which was 

formulated in 1795 by the German mathematician, physicist 

and astronomer Johann Carl Friedrich Gauss (1777-1855). 

In this law, the kinetic energy of the molecules is 

proportional to the absolute temperature 𝑇 of the gas. Later, 

in 1872, Boltzmann generalized this law, currently known 

as “Maxwell-Boltzmann law” [1]. 

The Maxwell-Boltzmann velocity distribution is, in 

short, a probability distribution that can be applied in 

various areas such as physics, engineering, biology, 

chemistry, etc. The process of evaporation of liquids [2], 

sunlight [3], thermal neutrons in nuclear reactors [4], 

income distribution [5], modeling of stock exchange indices 

[6], are all examples of phenomena in which the Maxwell-

Boltzmann velocity distribution can be employed. 

Despite its importance, most undergraduate courses in 

the area of exact sciences do not deal with the origin and 

demonstration of the Maxwell-Boltzmann velocity 

distribution law, presenting only its final equation. In order 

to fill this deficiency, in this work we seek to show in a very 

detailed and didactic way the demonstration of such a law. 

For this purpose, we initially introduce the kinetic theory of 

gases in Section 2 before starting the demonstration of the 

Maxwell-Boltzmann law, carried out in Section 3. Section 4 

addresses the issue of experimental verification of the 

Maxwell-Boltzmann velocity distribution law and its 

validity limit. Section 5 is reserved for conclusions and final 

comments. 
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II. THE KINETIC THEORY OF GASES 
 

The analysis of the movement of gas particles is very 

complex, as it involves an immense number of particles 

with their respective positions and linear moments. 

Normally this number is on the order of Avogadro’s number 

(≃ 6,022 × 1023), which makes the direct calculation of 

individual physical quantities such as kinetic energy and 

speed unfeasible. 

In this case, to extract relevant physical information 

from the system, a statistical approach is used on the 

individual magnitudes of the microscopic bodies that make 

up the system. These quantities are called “microscopic 

variables or microscopic quantities”. These, in turn, imply 

measurable macroscopic effects in the form of pressure, 

temperature and volume – aspects involved in the equation 

of state of a given substance. These quantities are called 

“macroscopic variables or macroscopic quantities” [7]. 

Conceptually, the pressure of a gas is the ratio between 

the force exerted by its particles on the inner faces of the 

walls of a container and the internal surface area of the 

container. The temperature of the gas is a measure of the 

average kinetic energy of its atoms or molecules, and its 

volume is the volume of the container that contains it [8]. 

The average kinetic energy 〈𝐸〉 takes into account the 

mean square value of the velocity of the gas particles, 〈𝑣2〉, 
based on the following relationship: 

 

〈𝐸〉 =
𝑚〈𝑣2〉

2
 ,                                      (1) 

 

where 𝑚 is the mass of its atoms or molecules. 

We then seek a physical-mathematical model that relates 

the macroscopic parameters temperature (𝑇), pressure (𝑃) 

and volume of the gas (𝑉) with the average kinetic energy 

and the average quadratic velocity of the particles that make 

up the gas. 

Let there be a gas at a constant temperature 𝑇 contained 

in a cubic recipient. The pressure that its particles exert on 

the internal walls depends on the transfer of momentum in 

the form of elastic collisions between the particles that make 

up the gas and the internal faces of the walls of the recipient 

that contains it. In this model, the gas is composed of point 

atoms or molecules and the forces arising from the 

interaction between the corpuscles, as well as their 

collisions, are negligible [9]. 

An isolated particle has mass 𝑚 and speed 𝑣⃗ with the 

directions and magnitudes of the free velocities. Particles 

are subject to Newton’s laws of motion with total isotropic 

motion. Figure 1 illustrates the elastic collision of a particle 

(atom or molecule) with one of the walls of the recipient. 

The transfer of linear momentum from the wall to the 

particle occurs, in the 𝑋 direction, as follows 

 

𝑝𝑥(inicial) = 𝑚𝑣𝑥(inicial) ,                            (2) 

 

and 

𝑝𝑥(final) = 𝑚𝑣𝑥(final) ,                             (3) 

 

 
FIGURE 1. Molecule moves with speed 𝑣⃗ towards a collision with 

the wall. 

 

and considering the perfectly elastic collision we have 

 

𝑣𝑥(final) = −𝑣𝑥(inicial).                            (4) 

 

Thus, the change in linear momentum1 of the particle 

immediately after collision with the wall is: 

 

∆𝑝 = 𝑝𝑥(final) − 𝑝𝑥(inicial) = 𝑚𝑣𝑥(final) − 𝑚𝑣𝑥(inicial).  
 

Using Eq. (4), this last expression becomes 

 

∆𝑝 = −𝑚𝑣𝑥(inicial) − 𝑚𝑣𝑥(inicial) , 
 

∆𝑝 = −2𝑚𝑣𝑥(inicial) = −2𝑚𝑣𝑥 , 
 

where it was defined: 𝑣𝑥 = 𝑣𝑥(inicial). Therefore, the 

momentum transferred from the gas molecule to the inner 

wall is 

 

∆𝑝 = 2𝑚𝑣𝑥 .                                  (5) 

 

The time required for the particle to reach the front wall and 

return, considering a cube with edge 𝐿 is: 

 

𝑣𝑥 =
2𝐿

∆𝑡
⇒ ∆𝑡 =

2𝐿

𝑣𝑥
 .                             (6) 

 

The variation of linear momentum 𝑝 in relation to temporal 

variation consists of the physical quantity force (Newton’s 

2nd Law), that is: 

 
∆𝑝

∆𝑡
= 𝐹 ⇒ ∆𝑝 = 𝐹∆𝑡, 

 

and using Eq. (5) this last expression becomes: 

 

𝐹∆𝑡 = 2𝑚𝑣𝑥 ⇒ 𝐹 =
2𝑚𝑣𝑥

∆𝑡
 .                    (7) 

 

Substituting Eq. (6) into Eq. (7) we have: 

 

                                                 
1 we will use 𝑝 (lower case) to represent linear momentum, and 𝑃 

(upper case) to represent pressure. 
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𝐹 =
2𝑚𝑣𝑥

2𝐿/𝑣𝑥
⇒ 𝐹 =

𝑚𝑣𝑥
2

𝐿
 .                      (8) 

 

This is the expression of the force that one particle produces 

on the wall of the recipient. To find the pressure 𝑃 exerted 

on this face of the wall, it is necessary to determine the 

force that all 𝑁 particles apply to it and relate it to its area 𝐿2 

 

𝐹𝑡𝑜𝑡𝑎𝑙 = ∑
𝑚𝑣𝑥𝑖

2

𝐿

𝑁

𝑖=1

 , 

 

𝑃 =
𝐹𝑡𝑜𝑡𝑎𝑙

𝐿2
=

1

𝐿2
∑

𝑚𝑣𝑥𝑖
2

𝐿

𝑁

𝑖=1

=
𝑚

𝐿3
∑ 𝑣𝑥𝑖

2

𝑁

𝑖=1

 . 

 

The average of the square of the velocities in the 𝑋 direction 

can be found by multiplying this last expression by the 

fraction 𝑁/𝑁: 

 

𝑃 = (
𝑁

𝑁
)

𝑚

𝐿3
(∑ 𝑣𝑥𝑖

2

𝑁

𝑖=1

) 

 

𝑃 =
𝑚𝑁

𝐿3
(∑

𝑣𝑥𝑖
2

𝑁

𝑁

𝑖=1

) =
𝑚𝑁

𝐿3
〈𝑣𝑥

2〉 

 

𝑃 =
𝑚𝑁

𝑉
〈𝑣𝑥

2〉,                               (9) 

 

where 𝐿3 is the volume 𝑉 of the cube. 

The average velocities are independent of the direction 

adopted, as there are a very large number of particles 

moving randomly very quickly [10]. In this way, the 

modules of the average velocities are equal in any direction. 

Like this: 

 
〈𝑣2〉 = 〈𝑣𝑥

2〉 + 〈𝑣𝑦
2〉 + 〈𝑣𝑧

2〉,               (10) 

 

With 

 

〈𝑣𝑥
2〉 =  〈𝑣𝑦

2〉 = 〈𝑣𝑧
2〉,                             (11) 

 

and then 

 

〈𝑣2〉 = 3〈𝑣𝑥
2〉 ⇒ 〈𝑣𝑥

2〉 =
1

3
〈𝑣2〉 .                (12) 

 

Substituting Eq. (12) into Eq. (9) we have 

 

𝑃 =
𝑚𝑁

𝑉

〈𝑣2〉

3
⇒ 𝑃𝑉 =

𝑚𝑁

3
〈𝑣2〉 .                (13) 

 

The ideal gas equation is [11] 

 

𝑃𝑉 = 𝑛𝑅𝑇,                                      (14) 

 

where 𝑅 is the ideal gas constant and 𝑛 is the number of 

moles. Eq. (14) can be related to Eq. (13) as follows 

 

𝑛𝑅𝑇 =
𝑚𝑁

3
〈𝑣2〉 . 

 

Being 𝑁 = 𝑛𝑁𝐴, where 𝑁𝐴 is Avogadro’s number [12], the 

previous expression takes the form 

 

𝑛𝑅𝑇 =
𝑚𝑛𝑁𝐴

3
〈𝑣2〉 ⇒ 𝑅𝑇 =

𝑚𝑁𝐴

3
〈𝑣2〉 . 

 

Using the molar mass 𝑀 of the gas to be 𝑀 = 𝑚𝑁𝐴, the 

previous expression becomes 

 

𝑅𝑇 =
𝑀

3
〈𝑣2〉 .                                 (15) 

 

Isolating 〈𝑣2〉, we have 

 

〈𝑣2〉 =
3𝑅𝑇

𝑀
 , 

 

and extracting its square root, we have the square root of the 

mean squared value of the particle velocity, denoted by 

𝑣rms: 

 

𝑣rms = √
3𝑅𝑇

𝑀
                                 (16) 

or 

𝑣rms  =  √
3𝑘𝑇

𝑚
 ,                               (17) 

 

where 𝑘 = 𝑅/𝑁𝐴 is the Boltzmann constant [13] (Lopes, 

2010). From Eq. (15), it can be deduced that the average 

squared velocity of each of the components  𝑣𝑥, 𝑣𝑦 and 𝑣𝑧  

is, 

 

𝑅𝑇 =
𝑀

3
〈𝑣2〉 =

𝑀

3
3〈𝑣𝑥

2〉, 

 

〈𝑣𝑥
2〉 =

𝑅𝑇

𝑀
 ,                                   (18) 

or 

〈𝑣𝑥
2〉 =

𝑘𝑇

𝑚
 .                                   (19) 

 

Soon 

𝑣𝑥(rms)  =  √
𝑅𝑇

𝑀
 ,                            (20) 

or 

𝑣𝑥(rms)  =  √
𝑘𝑇

𝑚
 .                          (21) 
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III. THE MAXWELL-BOLTZMANN VELOCITY 

DISTRIBUTION FUNCTION  
 

The results obtained in Section 2 are very significant, since, 

from a macroscopic physical quantity such as temperature 

𝑇, it is possible to determine the velocity 𝑣rms with which 

the gas particles move. However, the exposed deduction 

leads to another hypothesis. 

If there is 𝑣rms, a statistical velocity parameter, there 

may be a distribution of probable velocities, that is, a 

probability density function that describes the ranges of 

velocities to be assumed by the particles of this gas. James 

Clerk Maxwell presented, in 1859, a work in which he 

exposed a distribution of speeds of a gas in thermal 

equilibrium and, in 1876, Ludwig Boltzmann arrived at the 

same result using a different model. Below we present a 

possible deduction of this speed distribution function. 

Considering a three-dimensional space of molecular 

velocities, as illustrated in Figure 2. The objective is to find 

the probability of gas particles, which have different 

velocities, having velocity components between 𝑣𝑥 and 𝑣𝑥 +
𝑑𝑣𝑥; 𝑣𝑦 and 𝑣𝑦 + 𝑑𝑣𝑦; and 𝑣𝑧 e 𝑣𝑧 + 𝑑𝑣𝑧. 

 

 

 
FIGURE 2. Velocities space. 

 

 

Let be 𝑓(𝑣𝑥, 𝑣𝑦, 𝑣𝑧)𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 a fraction of the total 

number of particles of a gas with components 𝑣𝑥, 𝑣𝑦 and 𝑣𝑧 

comprised in the velocity range exposed in the previous 

paragraph. We want to find out what this speed distribution 

function is. As the mean square velocity depends on the gas 

temperature, it is assumed that this distribution also 

depends. Consider the gas in thermal equilibrium with a 

constant temperature 𝑇. 

By defining the probability of continuous random 

variables [14], and considering that the number of 

molecules is large enough to adopt as continuous the values 

of velocities contained in an interval whose limits tend to 

−∞ and +∞ in each dimension of the velocity space, there 

is up 

 

∫ ∫ ∫ 𝑓(𝑣𝑥, 𝑣𝑦, 𝑣𝑧)𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 = 1,       (22)

+∞

−∞

+∞

−∞

+∞

−∞

 

 

or 

∫ ∫ ∫ 𝑓(𝑣𝑥, 𝑣𝑦, 𝑣𝑧)𝑑𝑊 = 1 ,                (23)

+∞

−∞

+∞

−∞

+∞

−∞

 

 

where 𝑑𝑊 is the volume element of the velocity space, that 

is 𝑑𝑊 = 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧. 

However, two considerations must be made, similar to 

those used in Section 2 to deduce the speed 𝑣rms. Firstly, the 

components are independent, that is, the speed 𝑣𝑥, for 

example, is not linked to the values of 𝑣𝑦 and 𝑣𝑧. This is 

true for each component in relation to the other two. 

Secondly, there is no preferred spatial direction in which the 

molecules walk, that is, space is considered isotropic. 

Mathematically, these principles are expressed by 

adopting the same functional form for each component 

(spatial isotropy) and by separating the main function into 

autonomous functions in relation to the others 

(independence between components), that is 

 

∫ 𝑓(𝑣𝑥)𝑑𝑣𝑥

+∞

−∞

= 1,                                    (24) 

 

∫ 𝑓(𝑣𝑦)𝑑𝑣𝑦

+∞

−∞

= 1,                                   (25) 

 

∫ 𝑓(𝑣𝑧)𝑑𝑣𝑧

+∞

−∞

= 1 .                                    (26) 

 

As these components are independent and their functions 

are interpreted probabilistically, the function 

𝑓(𝑣𝑥, 𝑣𝑦, 𝑣𝑧)𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 is equal to the product of the 

component functions, that is 

 

𝑓(𝑣𝑥, 𝑣𝑦, 𝑣𝑧)𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 =  𝑓(𝑣𝑥)𝑑𝑣𝑥𝑓(𝑣𝑦)𝑑𝑣𝑦𝑓(𝑣𝑧)𝑑𝑣𝑧 , 

 

and integrating throughout the space 

 

∫ ∫ ∫ 𝑓(𝑣𝑥, 𝑣𝑦, 𝑣𝑧)𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧

+∞

−∞

+∞

−∞

+∞

−∞

= 

 

= ∫ 𝑓(𝑣𝑥)𝑑𝑣𝑥

+∞

−∞

∫ 𝑓(𝑣𝑦)𝑑𝑣𝑦

+∞

−∞

∫ 𝑓(𝑣𝑧)𝑑𝑣𝑧

+∞

−∞

 .    (27) 

 

Spatial isotropy implies non-dependence on the direction 

adopted, as the probability of finding a given number of 

particles in a fraction of the velocity space must be the same 

as that of another region equidistant from the origin of that 

space. Therefore, it is necessary to consider no longer the 

speed components, but its modulus in the speed distribution 

function, that is: 

 

𝑓(𝑣)𝑑𝑊 = 𝑓(𝑣𝑥)𝑓(𝑣𝑦)𝑓(𝑣𝑧)𝑑𝑊,               (28) 
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where 𝑣 = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2. Like this: 

 

𝑓(𝑣) = 𝑓(𝑣𝑥)𝑓(𝑣𝑦)𝑓(𝑣𝑧) .                     (29) 

 

Taking the derivative of 𝑓(𝑣) with respect to  𝑣𝑥, we have 

 
𝑑𝑓(𝑣)

𝑑𝑣𝑥
=

𝑑𝑓(𝑣𝑥)

𝑑𝑣𝑥
𝑓(𝑣𝑦)𝑓(𝑣𝑧) 

 

(
𝜕𝑓(𝑣)

𝜕𝑣
) (

𝜕𝑣

𝜕𝑣𝑥
) =

𝑑𝑓(𝑣𝑥)

𝑑𝑣𝑥
𝑓(𝑣𝑦)𝑓(𝑣𝑧) .           (30) 

 

As 𝑣 = (𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2)1/2, we have: 

 
𝜕𝑣

𝜕𝑣𝑥
=

1

2
(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)−1/2 ∙ 2𝑣𝑥 

 
𝜕𝑣

𝜕𝑣𝑥
=

𝑣𝑥

√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

=
𝑣𝑥

𝑣
                 (31) 

 

Furthermore: 
𝜕𝑓(𝑣)

𝜕𝑣
= 𝑓′(𝑣) ,                         (32) 

and 
𝑑𝑓(𝑣𝑥)

𝑑𝑣𝑥

= 𝑓′(𝑣𝑥) .                      (33) 

 

Inserting Eqs. (31), (32) and (33) into Eq. (30), we have 

 
𝑓′(𝑣)

𝑣
𝑣𝑥 = 𝑓′(𝑣𝑥)𝑓(𝑣𝑦)𝑓(𝑣𝑧) .               (34) 

 

Note that the ratio between Eq. (34) and Eq. (29) promotes 

the cancellation of the term 𝑓(𝑣𝑦)𝑓(𝑣𝑧) as follows 

 
𝑓′(𝑣)𝑣𝑥

𝑓(𝑣)𝑣
=

𝑓′(𝑣𝑥)

𝑓(𝑣𝑥)
 

 
𝑓′(𝑣)

𝑓(𝑣)𝑣
=

𝑓′(𝑣𝑥)

𝑓(𝑣𝑥)𝑣𝑥
 .                          (35) 

 

While the right side of the equality in Eq. (35) is a function 

that depends on one of the velocity components, it appears 

that the left side is only linked to the velocity modulus 𝑣. In 

turn, the velocity modulus is related to the values of 𝑣𝑥, 𝑣𝑦 

and 𝑣𝑧. So, for a given value of 𝑣𝑥, there are infinite 

combinations of 𝑣𝑦 and 𝑣𝑧 that make the above equality 

valid. Therefore, the above relationship only makes 

mathematical sense if it is equal to a constant value, that is: 

 

𝑓′(𝑣)

𝑓(𝑣)𝑣
=

𝑓′(𝑣𝑥)

𝑓(𝑣𝑥)𝑣𝑥
=

𝑓′(𝑣𝑦)

𝑓(𝑣𝑦)𝑣𝑦

=
𝑓′(𝑣𝑧)

𝑓(𝑣𝑧)𝑣𝑧
= const .  (36) 

 

We will make this constant equal to −2𝛼 due to the greater 

ease of working with the negative exponent after integrating 

one of the equations above. Like this: 

𝑓′(𝑣)

𝑓(𝑣)𝑣
= −2𝛼,                                    (37) 

and 
𝑓′(𝑣𝑥)

𝑓(𝑣𝑥)𝑣𝑥

= −2𝛼 .                               (38) 

 

Inserting Eq. (33) in Eq. (38), we have 

 
𝑑𝑓(𝑣𝑥)

𝑑𝑣𝑥𝑓(𝑣𝑥)𝑣𝑥
= −2𝛼 

 
𝑑𝑓(𝑣𝑥)

𝑓(𝑣𝑥)
= −2𝛼𝑣𝑥𝑑𝑣𝑥 .                         (39) 

 

Integrating this last expression 

 

∫
𝑑𝑓(𝑣𝑥)

𝑓(𝑣𝑥)
= ∫ −2𝛼𝑣𝑥𝑑𝑣𝑥 , 

 

ln(𝑓(𝑣𝑥)) = − 𝛼𝑣𝑥
2  +  𝐶 , 

 

𝑓(𝑣𝑥) = 𝑒− 𝛼.𝑣𝑥
2 +𝐶 , 

 

𝑓(𝑣𝑥) = 𝐴𝑒− 𝛼.𝑣𝑥
2
 ,                              (40) 

 

where 𝐴 =  𝑒𝐶. The function in Eq. (40) is a Gaussian 

curve similar to the normal distribution [14]. With this 

relationship in hand, one can find 𝑓(𝑣), considering that the 

functions of the other components of the velocity space are 

 

𝑓(𝑣𝑦) = 𝐴𝑒− 𝛼.𝑣𝑦
2
,                                (41) 

and 

𝑓(𝑣𝑧) = 𝐴𝑒− 𝛼.𝑣𝑧
2
.                                 (42) 

 

Inserting Eqs. (40), (41) and (42) in Eq. (29) we have 

 

𝑓(𝑣) =  𝐴𝑒− 𝛼.𝑣𝑥
2
𝐴𝑒− 𝛼.𝑣𝑦

2
𝐴𝑒− 𝛼.𝑣𝑧

2
, 

 

𝑓(𝑣) =  𝐴3𝑒− 𝛼.(𝑣𝑥
2+𝑣𝑦

2+𝑣𝑧
2), 

 

𝑓(𝑣) = 𝐴3𝑒− 𝛼.𝑣2
.                               (43) 

 

From Eq. (24) and Eq. (19) it is possible to determine the 

constants 𝐴 and 𝛼. Thus, inserting Eq. (40) into Eq. (24) we 

have: 

𝐼1 = ∫ 𝐴𝑒− 𝛼.𝑣𝑥
2

+∞

−∞

𝑑𝑣𝑥 = 1,                       (44) 

 

and with an analogous procedure in relation to the 𝑦 

component 

𝐼2 = ∫ 𝐴𝑒− 𝛼.𝑣𝑦
2

+∞

−∞

𝑑𝑣𝑦 = 1 .                      (45) 

 

The product between Eq. (44) and Eq. (45) results in 
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𝐼1 ∙ 𝐼2 = ∫ ∫ 𝐴2𝑒− 𝛼(𝑣𝑥
2+𝑣𝑦

2)

+∞

−∞

𝑑𝑣𝑦𝑑𝑣𝑥

+∞

−∞

= 1.       (46) 

 

It is observed from the symmetry of the integrals that: 𝐼1 =
𝐼2 = 𝐼. Taking a Cartesian plane with abscissa 𝑣𝑥 and 

ordinate 𝑣𝑦, the following relations to convert such 

coordinates into polar ones can be used [15]: 

 

𝑣𝑥
2 + 𝑣𝑦

2 = 𝑟2,                                (47a) 

 

𝑣𝑥 = 𝑟cos𝜃,                                 (47b) 

 

𝑣𝑦 = 𝑟sin𝜃,                                 (47c) 

 

𝑑𝑣𝑦𝑑𝑣𝑥 = 𝑟𝑑𝑟𝑑𝜃 .                       (47d) 

 

The integration limits −∞ < 𝑣𝑥 < +∞ and −∞ < 𝑣𝑦 <

+∞ of Cartesian coordinates are equivalent to the limits 

0 ≤ 𝑟 < ∞ and 0 ≤ 𝜃 ≤ 2𝜋 of polar coordinates. Thus, 

with the definitions presented in Eqs. (47a-d), Eq. (46) takes 

the form: 

 

𝐼2 = 𝐼1. 𝐼2 = ∫ ∫ 𝐴2𝑒− 𝛼𝑟2

+∞

0

𝑟𝑑𝑟𝑑𝜃

2𝜋

0

= 1, 

 

𝐼2 = 𝐴2 ∫ 𝑑𝜃

2𝜋

0

∫ 𝑒− 𝛼𝑟2
𝑟𝑑𝑟

+∞

0

= 1, 

 

𝐼2 = 𝐴2 ∙ 2𝜋 ∙
1

2𝛼
= 𝐴2

𝜋

𝛼
= 1 

 

𝐼 = 𝐴√
𝜋

𝛼
= 1 ⇒ 𝐴√

𝜋

𝛼
= 1 

 

𝐴 = √
𝛼

𝜋
 .                                   (48) 

 

To determine the constant 𝛼, the expression 〈𝑣𝑥
2〉 obtained in 

Section 2 is used. Conceptually, the quadratic mean of a 

continuous distribution, such as 〈𝑣𝑥
2〉, is given by the 

integral [14] 

〈𝑣𝑥
2〉 = ∫ 𝑣𝑥

2𝑓(𝑣𝑥)𝑑𝑣𝑥

+∞

−∞

, 

 

and using the expression of 〈𝑣𝑥
2〉 given by Eq. (19), the 

previous equation becomes 

 

𝑘𝑇

𝑚
= ∫ 𝑣𝑥

2𝑓(𝑣𝑥)𝑑𝑣𝑥

+∞

−∞

, 

 

∫ 𝑣𝑥
2 𝑒−𝛼𝑣𝑥

2
𝑑𝑣𝑥

+∞

−∞

=
𝑘𝑇

𝐴𝑚
 . 

Replacing the value of 𝐴 given by Eq. (48) and solving 

the integral [16], this last expression becomes: 

 

1

2
√

𝜋

𝛼3
=

𝑘𝑇

√𝛼/𝜋𝑚
 . 

 

Isolating 𝛼 

 

𝛼 =
𝑚

2𝑘𝑇
 .                                      (49) 

 

Introducing Eq. (49) into Eq. (48) we have 

 

𝐴 =  √
𝑚

2𝜋𝑘𝑇
 .                                   (50) 

 

Introducing Eqs. (49) and (50) into Eq. (43), we have 

 

𝑓(𝑣) = (√
𝑚

2𝜋𝑘𝑇
)

3

𝑒−
𝑚𝑣2

2𝑘𝑇  .                       (51) 

 

The product of 𝑓(𝑣) with volume element 𝑑𝑊 makes it 

possible to generalize such a model. With this, the function 

becomes dependent only on the velocity modulus, that is: 

 

𝑓(𝑣)𝑑𝑊 = 𝑓(𝑣)𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 , 

 

𝑓(𝑣)𝑑𝑊 = 𝑓(𝑣)𝑣2𝑑Ω𝑑𝑣                       (52) 

 

Note that: 

 

∫ 𝑓(𝑣)𝑣2𝑑Ω𝑑𝑣 = 4𝜋𝑣2𝑓(𝑣

4𝜋

0

)𝑑𝑣 .             (53) 

 

We therefore have the Maxwell-Boltzmann velocity 

distribution function, designated by 𝑓𝑀𝐵: 

 

𝑓𝑀𝐵(𝑣) = 4𝜋 (√
𝑚

2𝜋𝑘𝑇
)

3

𝑣2𝑒
−𝑚𝑣2

2𝑘𝑇 .            (54) 

 

The graph of this distribution resembles a Gaussian with 

beginning at the origin, quadratic growth and exponential 

decrease, as illustrated in Figure 3 for two temperature 

values. The value adopted for the mass 𝑚 was the mass of 

the electron. It is noted that the effect of increasing 

temperature makes the probability curve flatter and longer. 

The interpretation, at this point, is which fraction of gas 

particles have a velocity of magnitude between 𝑣 and 𝑣 +
𝑑𝑣, regardless of the direction. It also represents the 

probability of a particle having a speed between 𝑣 and 𝑣 +
𝑑𝑣. Therefore, we no longer think of a cube of dimensions 

𝑑𝑣𝑥, 𝑑𝑣𝑦 and 𝑑𝑣𝑧 that contains it, but of a spherical shell of 

thickness 𝑑𝑣 in the velocity space. Figure 4 illustrates this 

situation. 
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FIGURE 3. Maxwell-Boltzmann velocity distribution function for 

two temperature values. 

 

 

The most likely speed, 𝑣𝑝, is the value that maximizes the 

function 𝑓𝑀𝐵(𝑣). Graphically, it would be the velocity value 

responsible for the peak of the velocity distribution 

function. 

 

 
FIGURE 4. Representation of velocities space with magnitude 

distribution. 

 

 

Therefore, taking the derivative of the Maxwell-Boltzmann 

distribution and equating it to zero, we have: 

 

𝜕(𝑓𝑀𝐵(𝑣))

𝜕𝑣
=

𝜕 (4𝜋 (√
𝑚

2𝜋𝑘𝑇
)

3

𝑣2𝑒
−𝑚𝑣2

2𝑘𝑇 )

𝜕𝑣
= 0, 

 

2√
2

𝜋
(√

𝑚

𝑘𝑇
)

3

𝑣𝑝𝑒
−𝑚(𝑣𝑝)2

2𝑘𝑇 − √
2

𝜋
(√

𝑚

𝑘𝑇
)

3
𝑚(𝑣𝑝)3

𝑘𝑇
𝑒

−𝑚(𝑣𝑝)2

2𝑘𝑇

= 0, 
 

2√
2

𝜋
(√

𝑚

𝑘𝑇
)

3

𝑣𝑝𝑒
−𝑚(𝑣𝑝)2

2𝑘𝑇 = √
2

𝜋
(√

𝑚

𝑘𝑇
)

3
𝑚(𝑣𝑝)3

𝑘𝑇
𝑒

−𝑚(𝑣𝑝)2

2𝑘𝑇 , 

 

and after some simplifications 

 

2 =
𝑚(𝑣𝑝)2

𝑘𝑇
 , 

 

and finally 

𝑣𝑝 = √
2𝑘𝑇

𝑚
  .                                (55) 

 

The average speed, 〈𝑣〉, that is, the expected speed of this 

distribution, is given by the integral 

 

〈𝑣〉 = ∫ 𝑣𝑓𝑀𝐵(𝑣)𝑑𝑣

+∞

0

 , 

 

〈𝑣〉 = ∫ 𝑣4𝜋 (√
𝑚

2𝜋𝑘𝑇
)

3

𝑣2𝑒
−𝑚𝑣2

2𝑘𝑇 𝑑𝑣,

+∞

0

 

 

〈𝑣〉 = 4𝜋 (√
𝑚

2𝜋𝑘𝑇
)

3

∫ 𝑣3𝑒
−𝑚𝑣2

2𝑘𝑇 𝑑𝑣

+∞

0

, 

 

and solving the integral [16], we have 

 

〈𝑣〉 = 4𝜋 (√
𝑚

2𝜋𝑘𝑇
)

3
4(𝑘𝑇)2

2𝑚2
 , 

 

〈𝑣〉 = √
8𝑘𝑇

𝜋𝑚
 .                                  (56) 

 

The velocity 𝑣rms, obtained in Section 2, can be calculated 

from the Maxwell-Boltzmann velocity distribution as 

follows: 

〈𝑣2〉 = ∫ 𝑣2𝑓𝑀𝐵(𝑣)𝑑𝑣

+∞

0

 , 

 

〈𝑣2〉 = ∫ 𝑣24𝜋 (√
𝑚

2𝜋𝑘𝑇
)

3

𝑣2𝑒
−𝑚𝑣2

2𝑘𝑇 𝑑𝑣

+∞

0

, 

 

〈𝑣2〉 = 4𝜋 (√
𝑚

2𝜋𝑘𝑇
)

3

∫ 𝑣4𝑒
−𝑚𝑣2

2𝑘𝑇 𝑑𝑣
+∞

0
, 

 

and solving the integral [16], we have 

 

〈𝑣2〉 = 4𝜋 (√
𝑚

2𝜋𝑘𝑇
)

3
3√𝜋(2𝑘𝑇)5

8√𝑚5
, 

 

〈𝑣2〉 =
3𝑘𝑇

𝑚
, 

 

𝑣rms = √〈𝑣2〉 = √
3𝑘𝑇

𝑚
 .                    (57) 
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It is observed that Eq. (57) is equal to Eq. (17), which 

highlights the validity of this distribution. In summary, the 

following were obtained: 

 

 most likely velocity, 𝑣𝑝: 

 

𝑣𝑝 = √
2𝑘𝑇

𝑚
,  

 

 average velocity, 〈𝑣〉: 
 

〈𝑣〉 = √
8𝑘𝑇

𝜋𝑚
, 

 

 velocity 𝑣rms: 

𝑣rms = √〈𝑣2〉 = √
3𝑘𝑇

𝑚
. 

 

Note that: 𝑣𝑝 < 〈𝑣〉 < 𝑣rms. Figure 5 shows the Maxwell-

Boltzmann speed distribution, Eq. (54) for a temperature of 

300 K, highlighting the speeds: 𝑣𝑝, 〈𝑣〉 and 𝑣rms. The value 

adopted for the mass 𝑚 was the mass of the electron. 

 

 
Figure 5. Maxwell-Boltzmann velocity distribution, Eq. (54), for a 

temperature of 300 K, highlighting the velocities: 𝑣𝑝, 〈𝑣〉 = 𝑣𝑚 

and 𝑣rms. 

 

 

IV. AGREEMENT OF THE MAXWELL-

BOLTZMANN LAW WITH EXPERIMENTAL 

RESULTS AND ITS APPLICABILITY LIMIT 

 

One way to experimentally verify the validity of the 

Maxwell-Boltzmann velocity distribution law is to analyze 

how some molecular processes vary, such as the speed of 

chemical reactions when the temperature varies [17]. The 

experimental values obtained in these processes are in 

excellent agreement with the Maxwell-Boltzmann theory. 

A more direct verification of the Maxwell-Boltzmann 

velocity distribution law consists of counting the number of 

molecules in each velocity or energy interval. This can be 

done experimentally with a method that uses a mechanical 

speed selector composed of discs and slots that rotate with a 

determined angular velocity that selects the desired speeds, 

for example, in a recipient with an orifice containing a gas 

at a temperature 𝑇 [18]. The experimental results obtained 

again confirm the Maxwell-Boltzmann predictions. 

Neutrons produced in fission processes in a nuclear 

reactor are moderated using a material, such as water or 

graphite, until they reach thermal equilibrium at the 

temperature of the moderator. Neutrons in thermal 

equilibrium behave like an ideal gas and their energy 

distribution agrees with the Maxwell-Boltzmann velocity 

distribution law [19], that is, thermal neutrons follow 

Maxwell-Boltzmann statistics. This fact is essential in the 

design of nuclear reactors. 

A fundamental issue to be considered is the fact that the 

Maxwell-Boltzmann distribution admits a non-zero 

probability of finding particles with speeds greater than the 

speed of light in a vacuum 𝑐. However, it is known from the 

theory of relativity that only speeds smaller than 𝑐 have 

physical meaning. A velocity distribution function capable 

of dealing with this problem is the distribution function 

proposed by Jüttner called the Relativistic Maxwell-Jüttner 

Velocity Distribution Function [20, 21]. 

 

 

V. FINAL COMMENTS  
 

Despite its importance, in the introductory subjects of most 

undergraduate courses in exact sciences, the demonstration 

of the Maxwell-Boltzmann velocity distribution law is not 

demonstrated, only its final equation is presented. In order 

to fill this deficiency, in this work we present a didactic and 

very detailed path on the construction of the Maxwell-

Boltzmann velocity distribution. To this end, we begin with 

an introduction to the kinetic theory of gases and later 

demonstrate the Maxwell-Boltzmann speed distribution law. 

Based on this law, the most probable velocity, the average 

velocity and the square root of the mean squared value of 

the particle velocity were obtained. We also comment on the 

good agreement of the Maxwell-Boltzmann speed 

distribution law with experimental results and its 

applicability limit with regard to relativistic velocities. 
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