
Lat. Am. J. Phys. Educ. Vol. 17, No. 1, March 2023 1308-1 http://www.lajpe.org 
 

ISSN 1870-9095 

The Monty Hall Problem, Information and Entropy 
Simulation 

 
 

 
Matheus P. V. Silveira1, Marcio Velloso2, A. C. F. Santos2  
1Colégio Pedro II, Campus Realengo, 21710-261, Rio de Janeiro, RJ, Brazil. 
2Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. 

 

E-mail: toni@if.ufrj.br 

 

(Received 21 December 2022, accepted 18 March 2023) 

 

 

Abstract 
The present paper, suited for beginner college students, teaches what entropy is by examining the classic Monty Hall 

Problem, where a contestant is supposed to choose one of three closed doors to win a prize. We used Python simulation 

to calculate the probability of winning a prize by keeping or switching the initially chosen door and making an analogy 

to the behavior of the particles, with an unequal probability of being on both sides of a gas chamber. Boltzmann’s and 

Shannon’s entropies were introduced and their interpretation as a measure of missing information was suggested for 

introductory physics courses. 
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Resumen 
El presente artículo, adecuado para estudiantes universitarios principiantes, enseña qué es la entropía examinando el 

clásico problema de Monty Hall, donde se supone que un concursante debe elegir una de tres puertas cerradas para 

ganar un premio. Utilizamos la simulación de Python para calcular la probabilidad de ganar un premio manteniendo o 

cambiando la puerta elegida inicialmente y haciendo una analogía con el comportamiento de las partículas, con una 

probabilidad desigual de estar a ambos lados de una cámara de gas. Se introdujeron las entropías de Boltzmann y 

Shannon y se sugirió su interpretación como una medida de información faltante para los cursos de introducción a la 

física. 
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I. INTRODUCTION  
 

The concept and the word entropy are quite new, being created 

in the 19th century. The concept of entropy and the Second 

Law of thermodynamics are useful tools to put into operation 

physical phenomena. However, entropy is an abstract concept, 

and it can be tough for beginning students to understand its 

connection to their experiences in everyday life [1, 2, 3, 4]. 

This is largely acknowledged in the literature, which describes 

the difficulties and subtleties of many facets of teaching 

entropy [5]. 

In thermal physics, the Second Law of thermodynamics, 

i.e., entropy increase is a quantification of the spread of 

energy, from spatially localized to dispersed. In statistical 

physics, entropy increase is related to the change in systems 

from a few to more accessible microstates. Another concept 

of entropy is Shannon’s missing information [4], which is a 

broad, powerful, and abstract concept. Its interpretation has 

shed some light on the meaning of entropy. Thus, the main 

purpose of this paper is to suggest educators to replace the 

concept of entropy with the concept of missing information 

still in introductory physics courses. To do so, in the next 

section, we review the classic Monty Hall Problem [6], where 

a player is supposed to choose one among three closed doors 

to win a prize. Then, based on the premise that computer 

simulation helps to reinforce physics concepts [5], we use 

Python simulation to calculate the probability of winning a 

prize by keeping or switching the initially chosen door. 

Finally, by making an analogy to the behavior of particles, 

Boltzmann’s and Shannon’s entropies are introduced and their 

interpretation as a measure of missing information is 

suggested for introductory physics courses.  

 

 
II. THE MONTY HALL PROBLEM 
 

The Monty Hall (MH) Problem is settled on a popular TV 

show, “Let’s Make a Deal!” in the United States of America 

[6]. In short, the contestant or player is supposed to choose 

one among three closed doors, A, B, and C. There is a prize 

behind one door, as opposed to the other two doors in which 

nothing interesting is behind them. The contestant can choose 

one door (let us call it door A) and take what is behind it. 

However, the contestant is not aware of which door hides the 

prize. Subsequently, the contestant has chosen door A, and the 

host (MH), opens another door, let us call it door B, with 
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nothing in the background. The contestants then are supposed 

to choose between keeping their initial selected door, i.e., door 

A, or changing to the remaining door, door C. What would be 

the best contestant’s choice to win the prize? To keep or to 

change their initial choice?  

The unreflected claim for most of us is to stand, i.e., to 

keep the door initially chosen. It is intuitive, but wrong, to 

think that the chance that the prize is hidden behind the first 

chosen door is the same as it is hidden in the remaining door 

(50 % in both cases). One can use the frequentist approach to 

solve this problem. One can easily show (see Table I) that this 

common-sense perception is naive. As shown in Table I, there 

are nine equally possible exclusive scenarios. From Table I 

one sees that keeping the initially chosen door only gives us a 

1/3 probability of being victorious. On the other hand, 

changing the door gives us a 2/3 probability of winning. Thus, 

the contestant should switch the door. 

 
TABLE I. The nine equitably probable scenarios. The contestant is 

supposed to choose one among three closed doors, A, B, or C. The 

digits “1” and “0” stand for “winning” and “losing” respectively (see 

text for details).  

 

Door 

initially 

chosen 

Door 

which 

the car is 

behind 

Door 

opened 

by 

Monty 

Hall  

Switch 

door 

Keep 

door 

A A B or C 0 1 

A B C 1 0 

A C B 1 0 

B A C 1 0 

B B A or C 0 1 

B C A 1 0 

C A B 1 0 

C B A 1 0 

C C A or B 0 1 

Sum   6 3 

probability   6/9 =2/3 3/9=1/3 

 

 

Alternatively, one can apply conditional probabilities. Bayes’ 

Principle [6] provides the same result, although not so 

intuitive. It is a handy tool for probability calculations. Let H 

be a hypothesis one wishes to judge, D for a group of data, 

and I for the prior information one has besides the data. 

 

 
)|(

)|(
|)|(

IDP

IHP
HDIPDIHP  .                   (1) 

 

The prior probability P(H|I) of H will be updated to the 

posterior probability P(H|DI) because of getting data D. 

We define event A, event B, and event C, as the events 

whither the prize is hidden behind door A, door B, and door C, 

respectively. It is straightforward to figure out that P(event A) 

=P(event B)=P(event C)=1/3. Let us also define open A, open 

B, and open C, the events in which the host opens door A, B, 

or C, after the players have made their initial choice, 

respectively. Let us suppose that the player chooses door A. 

Since the host is not allowed to open either door A (the 

player’s initial guess) or the door which hides the prize, it is 

straightforward to write that P(open A)=P(open B| event B) = 

P(open C| event C ) =0. There are two remaining doors, and 

each has a 50% probability of being opened. Thus, P(door B| 

door A)=0.5, where, P(door B| door A) is the conditional 

probability of event B, given A. Let us consider the two 

options: i) the player’s initial guess is wrong. Thus, the host’s 

option to pick a door is conditioned to if the prize is hidden 

behind door B or door C. Therefore, the host is supposed to 

choose either door B or door C. Thus, P(open B| event 

C)=P(open C| event B) =1. In the second case: ii) The player’s 

initial guess is right. In that case, the host can select between 

the two remaining doors, B or C, at will. Thus, we can 

immediately write P(open B | event A) + P(open C| event A) = 

1. Let us calculate the probability for the host to open door B 

using the Law of total probability: 

 

P(open B) = P(open B| event A)P(event A) + P(open B|event 

B) P(event B) + P(open B| event C) P(event C).                 (2) 

 

In the assumption that the contestant initially chooses door A 

and then the host opens door B, the conditional probability that 

the prize is behind door A given that the host opens door B, 

i.e. the probability of winning without changing the initial 

choice is  
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  (3) 

 

Which agrees with the frequentist’s solution.  

 

 

III. SIMULATION WITH PYTHON 
 
We now describe a Python simulation to calculate the 

contestant’s probabilities for winning a prize by keeping or 

switching the initially chosen door (see Supplementary 

Information). The program was developed using Python 

language by Initially importing randint from random library 

and the library matplot.lib [7]. It created three empty lists, one 

to store the number of victories in one game, the second one 

to store the number of times the number of victories repeated, 

and the third one to plot the graph. As executed, the program 

chooses randomly two values between 1 and 3, that symbolize 

the three doors (one which represents the contestant’s chosen 

door, the second one which Monty opens with the goat, and 

the third one with the prize). The objective is to calculate the 

probability of success trading the door. If the values selected 

are equal, it will be considered a defeat, if they are different, 

the program will count and score a victory. This process will 

be repeated several times that can be adjusted and stored in 

the list win. All this process can be repeated several times that 

can be adjusted too, storing the new results in the list 

wincount.  

Figure 1 shows the distributions of the number of wins or 

losses after 100 events. The simulation was repeated 106 

times. The distribution on the left (red) shows the number of 

times the contestant wins after keeping the initially chosen 
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door, while the distribution on the right (blue) shows the 

corresponding number of wins after switching the initially 

chosen door. Figure 1 shows that the mean number of wins is 

66.66 out of 100 tries, corresponding to a probability of 2/3, 

in accordance with both the frequentist and conditional 

approaches discussed in the previous sections. Figure 1 also 

shows the standard deviations ( = 4.71) for both 

distributions. One can easily see that both distributions peaked 

quite sharply about the mean number of wins (33.34 out of 

100 in the case of keeping the initially chosen door and 66.66 

out of 100 in the case of switching the initially chosen door). 

Figure 1 also suggests that both distributions are binomial 

(either keeping or switching the door), with unequal 

probabilities of winning, 1/3 and 2/3, respectively.  
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FIGURE 1. Distribution for events in which the contestants change 

their initial choice. The simulation consists of an ensemble of 106 

systems, with 100 events each. 

 

In the next two sections, one introduces Boltzmann’s and 

Shannon’s entropy, respectively. An analogy between the 

Monty Hall Problem and a binary model system, the 

distribution of molecules in a box, is proposed.  We assume 

the system is composed of 100 independent molecules in a 

box. The ensemble is composed of a large number (106 in the 

present case) of identically prepared systems.  

 

 

IV. BOLTZMANN’S ENTROPY AND THE 

MONTY HALL PROBLEM: AN ANALOGY 
 

In the late XIX century, Boltzmann proposed a new definition 

of entropy, S in terms of the number of accessible microstates, 

, constituting a particular macrostate [8]. Boltzmann’s 

definition is the modern statistical interpretation of entropy. If 

there is a set of particles distributed among the  microstates, 

then Boltzmann’s entropy is  

 

 lnBkS .                                     (4) 

 

The Second Law of thermodynamics was formulated by 

Clausius in terms of dQ/T. Thus, it was straightforward to 

define the entropy in J/K in the International System of Units. 

Consequently, Boltzmann’s entropy was defined as with the 

same units as Clausius’ entropy. However, there is no 

impediment to defining temperature, , in units of energy, i.e., 

TkB [9]. Then, the entropy would be a dimensionless 

quantity. In fact, some textbooks define temperature as energy 

and entropy as a dimensionless quantity, see for instance [10]. 

A choice of base 2 in the logarithm in Eq. 2, instead of base 

e=2.71.., would be convenient to the interpretation of 

Boltzmann’s entropy as missing information (next section). 

Thus, we can define the modified Boltzmann’s entropy as 

(measured in bits) 

 

 2log .                                     (5) 

 

The fundamental assumption of statistical physics [10 p. 29] 

is that an isolated system, with no interaction with the rest of 

the universe, is equally probable to be in any of the accessible 

states, , i.e., p=-1. Although the MH problem does not 

constitute a thermal system (see discussion at the end of this 

section), within the frame of reference of information theory 

(see next section), one can though make an analogy between 

particles in boxes with the contestant’s initial choice among 

the three likely probable doors, i.e., p=1/3, maximizing 

Boltzmann’s modified entropy, Eq. 5, as =log23  1.58 bit.  

In the case of binary systems (states 1 or 2), the binomial 

distribution can be used to calculate the number of 

microstates. One can obtain the binomial coefficients from the 

generating function: 
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where, in the case of single particle probabilities, p1 + p2 = 1. 

The probability of n1 particles in a state 1 and n2 = N – n1 in 

a state 2, where N = n1 + n2, is the total number of particles 

in the system, given by 
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Where p1 and p2 are the individual probabilities of a single 

molecule being found in sides one of the two sides. The 

number of states in each configuration is  
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Variance 2 and standard deviation, , are defined, 

respectively, as 
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Since the nature of the two states systems is irrelevant to the 

result, i.e., it does not matter if the system is a chamber with 

molecules, coins, or a binary alloy, or a number of trials, one 

can apply the binomial distribution to the Monty Hall 

problem, with p1 = 2/3 and p2 = 1/3, where p1 and p2 are the 

winning probabilities for switching and keeping the initially 

chosen door, respectively. In fact, for a system of N=100 

molecules (or trials), one obtains: n1 = 66.66 and n2 = 

33.33, =4.71, as shown in Fig. 1.  

The De Moivre-Laplace theorem provides a limiting value 

to the binomial distribution as the normal (Gaussian) 

distribution: 

 

 

 
 

21

2
11

11

2

21

21
11

1

2

1

!!

!

pNp

Npn

nNn
N

e
pNp

pp
nNn

N
Lim














       (11) 

 

Thus, one can appoint probabilities to maximize entropy, 

subject to the constraints, which are based on our information 

about the system. In the case of the MH problem, one can 

maximize Boltzmann’s entropy subject to the conditional 

probabilities, p1 = 2/3 and p2 = 1/3. Thus, in the Monty Hall 

Problem, Boltzmann’s entropy divided by Boltzmann’s 

constant is (100!  9.33  10+157; 33!  8.68  10+36; 66! 

5.44 10+92, 50! 3.04 10+64) 

 

!50!50

!100
log

!66!33

!100
log 22  ,                   (12)

 

 

which is smaller than a 50% probability (p1 = p2 = 0.5). The 

reason for this smaller value can be understood in terms of 

information (next section). 

However, the Monty Hall Problem, or any collection of 

ordinary macro-objects, such as coin flipping, does not 

establish a thermodynamic system, as opposed as a group of 

molecules. The comparison between the Monty Hall Problem 

with particles in a box is just an analogy! The reason is that 

coin flipping of the number of trials in a Monty Hall problem 

does not exchange energy (dQ) as are molecules in a chamber. 

Clausius’ original definition of entropy, i.e., dS = dQ/T, in a 

reversible process, applies to a thermodynamic system plus its 

surroundings.  

The attribution of the thermodynamic entropy upsurge with a 

change in the spatial configuration of a set of macro-objects is 

a common misconception in physics and chemistry textbooks 

[3, 4]. Notwithstanding, we understand that the present 

analogy is an important pedagogical tool to aid the student’s 

understanding of entropy. There is a vast literature about the 

misconceptions about entropy, see for instance [3, 4]. 

Although entropy increase can occasionally be understood in 

terms of an increase in disorder, it can invariably be explained 

in terms of the dispersal of energy, as well as misinformation, 

as shown in the next section. 

 

 

V. SHANNON’S ENTROPY AND THE MONTY 

HALL 

 
Information theory was made known in 1948 by Claude 

Shannon [11] to solve the problem of information 

transmission in communication lines. Shannon wanted to find 

a method for sending information in a noisy channel with 

minimum errors. Today, it is useful in statistical mechanics, 

linguistics, economics, and many other areas. The amount of 

information, Qi, is determined by the probability distribution: 

 

0log 2  ii pQ .                            (13) 

 

The amount of information associated with a given outcome 

with probability pi (Eq. 13) decreases as pi increases. 

Whenever this outcome is quite unprobable (pi very small) the 

amount of information associated with obtaining that outcome 

is large. Thus, entropy and information, as defined in Eq. 13, 

are related quantities. In fact, entropy can be interpreted as a 

measure of uncertainty. When one knows that the system is in 

a particular macrostate, the entropy measures the degree of 

uncertainty about the specific microstate it is. Shannon 

Entropy is defined as the average amount of information 

contained in each event: 

 



i

ii ppQS 2log

                       (14) 

 

If pi is small, the corresponding outcome is quite unprobable. 

Thus, it does not contribute significantly to the average 

information (Eq. 14). On the other hand, whenever the 

outcome is highly probable (pi ~ 1), it contributes significantly 

to the average information, although carries little information 

content (Eq. 13).  

It also gives us a measure of our uncertainty about a 

system, based on our limited knowledge of its properties. 

Information is a physics quantity. Then, the initial entropy 

associated with formation about where the prize is: 

 

58.13log
3

1
log

3

1
3

1

22




i

oS bit,               (15) 

 

which agrees with the modified Boltzmann’s entropy Eq. 5. 

The Shannon entropy for a two-outcome (event A or event B) 

random variable p (0< p < 1), is given by  

 

)1(log)1(log)( 22 pppppS  .            (16) 

 

The behavior of S(p) in Eq. 15 as a function of p is plotted in 

Fig. 2. S(p) reaches a maximum when p = 1/2, the numerical 

value of the missing information in this case is one. This is 

also called one bit (binary digit) of information. From Fig. 2, 

one sees that S(p) is a minimum (S(p)=0) when p = 0 or 1. If 

p = 1, one knows for sure that event A takes place. If p = 0, 

one knows for sure that event B takes place. In both cases the 

missing information is null. The behaviors of both outcomes 

with probabilities p1 = p, and p2 = 1 – p, simply mirrors images 

of each other.  
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FIGURE 2. The function S(p) (Eq. 16) for two outcomes. 

  

 

Going back to the MH Problem, let us assume that the 

contestant’s initial choice is door A. As discussed above, the 

new entropy after the player has made the initial choice is: 

 

93.0
2

3
log

3

2
3log

3

1
22 S bit,               (17) 

 

one knows that, in this case, it is more likely to win the prize 

if one changes our initial choice (p=2/3). The player now has 

more information than in the case where the two events 

(changing or keeping) are equally probable. We can use this 

0.07 bit of information to bet on changing our initial choice, 

and on average, we can win 66 % of the time.  

The larger the number of doors, the greater the amount of 

information one would need to locate the prize. For instance, 

for N equiprobable doors (p=1/N), Shannon’s entropy would 

be NN
N

S

N

i

2

1

2 loglog
1




. In other words, the larger the 

number of doors, the larger the amount of missing 

information, and the larger entropy. Once the door with the 

prize behind it is found, one would get all the information we 

need, and the entropy would be null. This is analogous to one 

molecule in a chamber of volume V. The chamber could be 

divided into N small cells each with volume Vo=V/N. 

Shannon’s entropy, then, would be a measure of the number 

of binary questions one needs to inquire to localize the 

molecule.  

Shannon’s entropy (Eq. 14), apart from a constant, is 

equivalent to Gibbs’ entropy, 

i

iiB ppkS ln [12], which 

can be demonstrated to reduce to Boltzmann’s entropy [13]. 

The similarities among Shannon’s, Gibbs’, and Boltzmann’s 

entropies provide a clue that thermodynamic entropy is a 

measure of one’s unpredictability about a system. This 

uncertainty rests on one’s lack of knowledge about the 

properties of the system, as well as about whichever of its 

microstates the system is in. In this frame of reference, even 

beginning students can figure out entropy from an information 

theory framework, where both Gibb’s and Boltzmann’s 

entropies are measures of the missing information required to 

determine the microstate of a system. 
 

 

VI. CONCLUSIONS  
 

In this paper, we suggest teaching the concept of entropy as 

missing information for beginning college students. For that, 

we contextualize the MH problem, which is quite famous, 

interesting, challenging, and suitable for college students. It is 

a simple question with a counterintuitive answer. It uses 

concepts of information to make a probabilistic decision.  

By redefining entropy as a dimensionless quantity and the 

temperature in units of energy, the identification between 

Boltzmann’s and Shannon’s entropies and consequently the 

interpretation of entropy as a measure of missing information 

to specify the microstate of a system would become 

straightforward. 

By making an analogy between particles in boxes with the 

contestant’s initial choice among the three likely probable 

doors, i.e., p=1/3, maximizing Boltzmann’s modified entropy, 

as =log23  1.58 bits, which is analog to a closed system. 

After the contestant makes his/her initial choice and MH 

opens one door, the probability is no more constant, being 1/3 

for keeping the initial choice and 2/3 for changing the door. 

Now the analogy is with an interacting system. In that case, 

MH plays the role of the external interaction, and the entropy 

falls to 0.93 bit, which means that the contestant now has more 

information on the system.  
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APPENDIX 

Program in Python for the Monty Hall Problem (comments 

in Portuguese) 

 
from random import randint 

win = 0 #win será o número de vitórias trocando de porta. Ele 

mudará a cada novo ciclo 

wincount = [] #armazenará todos os valores de win 

for n in range(0, 100): #Controla quantas vezes o ciclo será repetido 

(Atual de 100 ciclos) 

  for c in range(0, 100): #Controla quantos jogos terão em cada 

ciclo (Atual de 100 jogos) 

    dc = randint(1, 3) #(door chosen) A porta escolhida pelo 

participante será aleatoriamente uma das três. 

    rd = randint(1, 3) #(right door) A porta que contém o prêmio será 

aleatoriamente uma das três. 

    if dc != rd:  

      win = win + 1 #Caso sejam portas diferentes, obrigatoriamente 

ele ganharia trocando, assim uma vitória será armazenada 

  wincount.append(win) #A quantidade total de vitórias neste ciclo 

será armazenada 

  win = 0 #A quantidade de vitórias é zerada para que um novo ciclo 

tenha início 

print(wincount) #Por fim é revelado quantas vitórias foram obtidas 

em cada um dos ciclos e os dados podem ser utilizados para a 

confecção de um gráfico. 

 

 

 


