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Abstract 
Relativistic and nonrelativistic quantum mechanics formulated in a noncommutative space have recently become the 

object of renewed interest. We approximately solve the deformed Dirac equation for a new suggested improved 

Trigonometric scarf potential within the Coulomb-Hulthén-like tensor interaction (ITSP-ICHLTi) in the context of three-

dimensional extended relativistic quantum mechanics symmetries with arbitrary spin-orbit coupling quantum number 

k . In the framework of the spin and pseudospin (p-spin) symmetry, we obtain the global new energy eigenvalue which 

equals the energy eigenvalue in the usual relativistic QM as the main part plus three corrected parts produced from the 

effect of the spin-orbit interaction, the new modified Zeeman and the rotational Fermi term, by using the parametric of 

well-known Bopp's shift method, standard perturbation theory, and Greene-Aldrich approximation. The new values that 

we get appeared sensitive to the quantum numbers (j, k, l, m, lp, mp, s, sp), the mixed potential depths (V0, Hc, HH), the 

range of the potential α, and noncommutativity parameters (Θ, η, χ). We recovered the problems of the nonrelativistic 

limit of spin symmetry in the context of extended nonrelativistic quantum mechanics symmetries. 

 

Keywords: Dirac equation, Trigonometric scarf potential, Noncommutative space, Bopp's shift method and star 

products. 

 

Resumen 
La mecánica cuántica relativista y no relativista formulada en un espacio no conmutativo se ha convertido recientemente 

en objeto de renovado interés. Resolvemos aproximadamente la ecuación de Dirac deformada para un nuevo potencial 

de bufanda trigonométrico mejorado sugerido dentro de la interacción tensor tipo Coulomb-Hulthén (ITSP-ICHLTi) en 

el contexto de simetrías tridimensionales de mecánica cuántica relativista extendida con un número cuántico k de 

acoplamiento de órbita-espín arbitrario. En el marco de la simetría de espín y pseudoespín (p-spin), obtenemos el nuevo 

valor propio de energía global que es igual al valor propio de energía en la MC relativista habitual como la parte principal 

más tres partes corregidas producidas por el efecto de la interacción espín-órbita, el nuevo Zeeman modificado y el 

término rotacional de Fermi, utilizando los parámetros paramétricos del conocido método de desplazamiento de Bopp, 

la teoría de la perturbación estándar y la aproximación de Greene-Aldrich. Los nuevos valores que obtenemos parecen 

sensibles a los números cuánticos (j, k, l, m, lp, mp, s, sp), las profundidades potenciales mixtas (V0, Hc, HH), el rango del 

potencial α, y los parámetros de no conmutatividad (Θ, η, χ). Recuperamos los problemas del límite no relativista de la 

simetría de espín en el contexto de simetrías extendidas de la mecánica cuántica no relativista. 

 

Palabras clave: Ecuación de Dirac, potencial bufanda trigonométrico, espacio no conmutativo, método de 

desplazamiento de Bopp y productos estrella. 

 

 

 

 

I. INTRODUCTION  
 

The end of the twentieth century was a happy event for all of 

humanity, as it witnessed the emergence of two great 

revolutions in the field of science that made humanity confront 

a new phase of an exciting turn toward the enlightening horizon 

and heralded an expected renaissance. These two enlightening 

events shed light on each of the macroscopic states of the 

universe, represented by Einstein's special and general 

relativity, as well as the microscopic states associated with the 

state of the atomic and subatomic systems. The latter is framed 

in quantum physical systems where the dimensions are 

measured on the Planck scale and the Nanoscales. These very 

accurate systems are governed by four fundamental equations 

and are well known to researchers and specialists the 

Schrödinger equation (SE), the Duffin-Kemmer Petiau 

equation (DKPE), the Klein-Gordon equation (KGE) and the 

Dirac equation (DE). The first equation (SE), describes the 

relative position at the level of low energies, while the other 

three equations describe the relative state at the level of high 

energies according to the values of spin. The relativistic effect 

must be considered when a particle is in a strong potential field, 
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leading to a relativistic quantum mechanical description of 

such a particle, with this condition, KGE, DE, or DKPE should 

be used to describe a particle in a strong potential field. 

Furthermore, the DE's spin and pseudospin symmetries, as well 

as their contributions to nuclear and Hadron physics, are of 

major physical importance. The trigonometric scarf potential is 

among the important models that have been used in this 

context. Wei et al. (2010) used a straightforward algebraic 

approach to investigate the exact solution to DE with scalar and 

vector trigonometric scarf potentials under the condition of 

spin symmetry and presented the transcendental energy 

equation and the spinor waveforms [1]. It can be used to 

construct a periodic potential in solid-state physics and is also 

used to describe one-dimensional crystal models [2, 3]. L'evai 

et al. investigated the real and complex energy spectra of the 

Trigonometric scarf potential within the framework of the PT-

symmetric quantum mechanics [4]. Quesne also used 

exceptional orthogonal polynomials to expand the 

Trigonometric scarf potential as the extended Trigonometric 

scarf potential, finding that the extended version had the same 

energy spectrum as the usual trigonometric scarf potential with 

new wave functions [5]. Within the framework of an 

approximation scheme to the centrifugal barrier, Falaye and 

Oyewumi obtained solutions of the Dirac equation with spin 

and pseudo-spin symmetry for the scalar and vector 

trigonometric scarf potentials in dimensions D, as well as the 

energy spectrum and two-component spinor eigenfunctions 

[6]. Onate et al. investigated the solutions of spin and 

pseudospin symmetries under the effect of the Trigonometric 

scarf potential in the presence of a new tensor interaction and 

obtained the nonrelativistic equation by taking the 

nonrelativistic limit of the spin symmetry [7]. The main goal of 

this research is to use Bopp's shift method [8, 9, 10, 11] to 

investigate the spin symmetry and pseudospin symmetry 

features of Trigonometric scarf potentials within the context of 

Dirac theory but within the framework of new symmetries that 

are more comprehensive than the symmetries of quantum 

mechanics known in the literature, resulting in the deformation 

of space-space. Another recent area of research that has 

received a lot of attention is the study of physical and chemical 

systems in a new phase-space known as noncommutative 

quantum mechanics (NCQM), which is a more generalized 

version of the usual quantum mechanics. NCQM symmetries 

are based on the novel postulates     0, ,,,, 






 
ihs

nc
ihs

nc xx  and 

    0, ,,,, 






 
ihs

nc
ihs

nc pp  , which form noncumulative space-space 

(NCSS) and noncumulative phase-phase (NCPP), respectively, 

as well as the conventional quantum mechanics postulates 

which generated the form     0, ,,,, 






 
ihs

nc
ihs

nc px  . The 

researchers believe that this expanded framework provides 

hope for solving many of the problems observed in quantum 

gravity, string theory, the standard model's divergence 

problem, quantum field theory regularization schemes and the 

study of low energy effective theories of D-branes in 

background magnetic fields [12, 13, 14, 15, 16, 17, 18, 19, 20, 

21, 22]. NCSS and NCPP are important tools for improving the 

current features of various quantum systems. whereas Connes 

[23] introduced the geometric analysis of NCSS and NCPP in 

1991 and 1994 [24, 25]. With a nonzero B-field, Seiberg and 

Witten extend previous ideas concerning the advent of NC 

geometry in string theory and derive a new form of gauge fields 

in noncommutative gauge theory [26]. Among the potential 

goals of NCSS and NCPP is that the emergence of new 

quantum fluctuations can cancel the observed unwanted 

divergences or the infinities that appear to cause short-range in-

field theories that include gravitational theory [27]. Through 

this new study, we dig deeper into the study of this potential to 

look at the possibility of other applications at the nano level. 

The research reported in the present paper was motivated by 

the fact that the study of the improved Trigonometric scarf 

potential, including a generalized (Coulomb-Hulthén)-like 

tensor interaction (ITSP-ICHLTi) in the DDT symmetries, has 

not been reported in the available literature. In this work, the 

vector and scalar ITSP-ICHLTi model (  ncts rV ,  ncts rS ) to be 

employed is defined as: 
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where     rSrV tsts ,  are the vector and scalar potentials 

according to the view of RQM known in the literature [6, 7]: 
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where 00 / SV  are the potential depths,   is the screening 

parameter,  rrnc  and  are the distance between the two 

particles in the deformation of Dirac theory symmetries and 

QM symmetries, respectively. The two couplings ( L  and 

p
L ) are the scalar product of the usual components of the 

angular momentum operators (  zyx LLL ,,L /  p
zy

p
x

p LLL ,,L

) and   is the modified noncommutativity vector 

  2/,, 132312   which presents the noncommutativity 

elements parameter. In the case of NCG , the noncentral 

generators can be suitably realized as self-adjoint differential 

operators (
 ihs
ncx ,,
 ,

 ihs
ncp ,,
  ) appear in three varieties the first 

one is the canonical structure (CS), the second is the Lie 

structure (LS), while the last corresponds to the quantum plane 

(QP) in the representations of Schrödinger, Heisenberg, and 
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interactions pictures, obeying the following set of commutation 

relations [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]: 
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which will lead to the following simplified relations within the 

framework of quantum mechanics, known in the literature as, 
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We have used natural units .1 c  Thus, in the present 

investigation, we define the non-commutativity of quantum 

theory, in which coordinates 
  ihs
ncx ,,
  are non-commuted and 

momenta
  ihs
ncp ,,
 are commuted. Here 
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 ihs
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 =  i

nc
h
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s
nc ppp   , ,  are the 

generalized coordinates and corresponding generalizing 

coordinates in the DDT symmetries, respectively, and IC is the 

complex number field. In the RQM symmetries, 
   ihsihs xxxx  ,,,,   and 

 ihsp ,,
 =(

sp ,
hp ,

ip ) are 

corresponding coordinates. Furthermore, the usual uncertainty 

relation corresponding to Eq. (4c) will be extended to two 

uncertainties in the new form symmetry as follows: 
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here L  and K  are present the following average values  
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The incertitude relation in Eq. (5) is obtained as a result of the 

generalization of the second part of Eq. (4b) to the first part of 

Eq. (4a), while the second uncertainty relation in Eq. (6) is the 

result of the deformation of space-space that appears from the 

second part of Eq. (4a) that is divided into three varieties. It is 

important to note that Eqs. (4a) are covariant equations (the 

same behavior 
 ihs
ncx ,,
 ) under the Lorentz transformation, 

which includes boosts and/or rotations of the observer's inertial 

frame. We have extended the modified equal time 

noncommutative canonical commutation relations 

(METNCCCRs) to include the Heisenberg and interaction 

pictures in DDT. Here  eff [39] is the effective Planck 

constant,    (  is the noncommutative parameter, 

and   is simply an antisymmetric number, 1  

with and  0 ) which is an infinitesimal parameter if 

compared to the energy values and elements of antisymmetric 

33  real matrices, and   is the Kronecker symbol. The 

symbol   represents the Weyl-Moyal star product, which is 

generalized between two ordinary functions )()( xgxh  to the 

new deformed form )()( xgxh   in the symmetries of 

deformation of Dirac theory, known as the star-product 

determined by [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]: 
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In the current paper, we apply the MASCCCRs in the DDT, 

which allows us to rewrite   xgh  to the following simple 

form (at the first order of the noncommutativity parameter 

 
) as follows [52, 53, 54, 55, 56, 57] 
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Possible values for indices  ,  are (1,2,3) and  2O  stand 

for the second and higher-order terms of the NC parameter  . 

Physically, the second term in Eq. (7) presents the effects of 

space-space noncommutativity. The outline for our paper is the 

following: The first section includes the scope and purpose of 

our investigation, while the remaining parts of the paper are 

structured as follows: A review of the DE with the 

Trigonometric scarf potential, including a generalized 

(Coulomb-Hulthén)-like tensor interaction, is presented in 

section 2. section 3 is devoted to studying the DDE by applying 

the usual, well-known Bopp's shift method and the like Greene 

and Aldrich approximation for the centrifugal term to obtain 

the effective potentials of the ITSP-ICHLTi model in DDT 
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symmetries. Furthermore, via standard perturbation theory, we 

find the expectation values of some radial terms to calculate the 

corrected relativistic energy generated by the effect of the 

perturbed effective potential of the ITSP-ICHLTi model. We 

derive the global corrected energy from the ITSP-ICHLTi 

model. We will also treat the nonrelativistic limit. Section five 

is devoted to the conclusions. 

 

 

II. OVERVIEW OF THE EIGENFUNCTIONS AND 

EIGENVALUES FOE TSP-ICHLTi MODEL IN 

RQM SYMMETRIES 

 
To construct a physical model describing a physical system that 

interacted with improved Trigonometric scarf potential within 

the generalized (Hulthén and Coulomb) like tensor interaction 

(ITSP-ICHLTi) in deformation Dirac theory, it is useful to 

recall the eigenvalues and the corresponding eigenfunctions 

under influence of the corresponding system within the 

framework of relativistic quantum mechanics known in the 

literature. In this case, the Trigonometric scarf potential within 

the generalized (Hulthén and Coulomb) like tensor interaction 

TSP-ICHLTi is governed by the DE as: 
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here ts
DH  is the Dirac Hamiltonian operator produced with 

vector and scalar potentials     rSrV tsts , , M  is a reduced 

rest mass and ip  it is the momentum operator. The 

vector potential  rVts  due to the four-vector linear 

momentum operator A (  rVts , 0A ) and space-time 

scalar potential  rSts  due to the mass, nkE  is the relativistic 

eigenvalues,  kn,  representing the principal and spin-orbit 

coupling terms, respectively. The tensor interaction  rU
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Because the Trigonometric scarf potential has spherical 

symmetry, solutions of the known form 
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are allowed, here  rFnk  and  rGnk  represent the upper and 

lower components of the Dirac spinors   ,,rnk  while 

  ,l
jmY  and   ,

pl
pjm

Y  are the spin and pseudospin spherical 

harmonics and  pmm,  are the projections on the z-axis. The 

upper and lower components,  rFnk  and  rGnk , satisfy the 

two uncoupled differential equations illustrated below: 
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Here  rU
sglt
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  is given by: 
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Putting the tensor interaction  rU  into Eq. (9c) we have: 
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with 
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The negative sign and the positive sign correspond to the 

effective tensor interaction
sglt

effU


 and 
pglt

effU


, respectively, 

while      rSrVr tststs   and  rts =    rSrV tsts   are 

determined by: 
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In RQM symmetries, we derive the following second-order 

Schrödinger-like equation: 
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and 
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with s
s
nk CEM 0 , p

p
nk CEM 1  while  1kk  

and  1kk  are equals  1pp ll  and  1ll , respectively. In 

RQM symmetries, the authors of ref. [7] used the NU method 

and Greene-Aldrich approximation for the centrifugal term to 
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and 
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here  rs 2exp   while s
nkf  and 

p
nkf   are given by: 
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while s
1 , s

3 , 
p
1  and 

p
3  are given by: 
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while 
s
nkN  and 

ps
nkN  are the normalization constants. The 

equations of energy for the spin symmetry and the p-spin 

symmetry, are given by [7]: 
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and 
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where, 
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In the following sections, we will need another formula later 

for the upper and lower components  sF s
nk  and  sG p

nk . We 

will use the standard transform expression 
  sP nn ba

n 21
,
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known in the literature, in the following form: 
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Thus, he upper  sF s
nk  and lower  sG

p
nk  components for 

ITSP-ICHLTi become,  
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nkN  and 
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, respectively. The lower component 

 sG s
nk  of spin symmetry and the upper component  sF p

nk  of 

p-spin symmetry are obtained as follows: 
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III. The NEW SOLUTIONS OF DDE UNDER THE 

ITSP-ICHLTi IN THE DDT SYMMETRIES: 

 
A Review of Bopp's shift method 

 

In this subsection, let us begin by finding the DDE in the 

symmetries of the deformation Dirac theory under the ITSP-

ICHLTi model. Our objective is achieved by applying the new 

principles which we have seen in the introduction, Eqs. (4) and 

(7), summarized in the new relationships MASCCCRs and the 

notion of the Weyl-Moyal star product. In the DDT symmetry, 

these data will allow us to rewrite the upper and lower 

components,  rFnk  and  rGnk  in Eqs. (12) and (13) as 

follows: 

 

   

  
  0

1

0

2
2

2





















rF

rEM

rUrkk
s

nk

ts
s
nk

sglt
effdr

d

,          (23) 

 

and 
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The application of the Connes technique [24, 25], or the 

Seiberg and Witten [26] are two alternative ways to obtain 

answers to Eqs. (23) and (24). Below, we will introduce the 

simple but powerful Bopp's shift method which has solved 

many vital physical problems in deformation quantum 

mechanics; the details can be found in [8, 9, 10, 11]. It is known 

to specialists that the star product can be translated into the 

ordinary product known in the literature using what is called 

Bopp's shift method. F. Bopp was the first to consider pseudo-

differential operators derived from a symbol using the 

quantization rules ( x  and p ) ( xxnc  and x
i

nc pp 
2

) 

rather than the ordinary correspondence: ( x  and p ) (

xxnc   and x
i

nc pp 
2

), respectively. For the researchers, 

this procedure is known as Bopp's shifts, and this quantization 

procedure is known as Bopp quantization. In recent years, this 

method has had a great deal of success. Under the influence of 

a variety of potentials, researchers were looking for a solution 

to the deformed nonrelativistic Schrödinger equation 

(DNRSE), this is through their successful application of Bopp's 

shift method (see for example some typical references [58, 59, 

60, 61, 62, 63, 64, 65, 66, 67, 68, 69]). On the other hand, this 

method has achieved other successes on a relativistic level, for 

example, we find some typical applications of this method in 

the framework of the deformed relativistic Klein-Gordon 

equation (DRKGE) (see the refs. [28, 29, 30, 71, 72, 73, 74]), 

for the DDE (see for example the Refs. [34, 75, 76, 77, 78, 79, 

80]) and for the deformed relativistic Duffin-Kemmer-Petiau 

equation (DRDKPE) [81, 82]. Thus, Bopp's shift method is 

based on reducing second-order linear differential equations of 

the DNRSE, DRKGE, DDE, and DRDKPE with the Weyl-

Moyal star product to second-order linear differential equations 

of NRSE, RKGE, DE, and RDKPE without the Weyl-Moyal 

star product with simultaneous translation in the space-space. 

It is worth noting that Bopp's shift method allows us to reduce 

Eqs. (23) and (24) to their simplest form with the ordinary 

product known in the litterateur: 
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The modified algebraic structure of covariant canonical 

commutation relations with the notion of the Weyl-Moyal star 

product in Eqs. (4) become new METNCCCRs with ordinary 

known products in literature is as follows (see, e.g., [8, 9, 10, 

11]): 
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In the symmetries of DDT, the generalized positions and 

momentum coordinates (
 ihs
ncx ,,
  and 

 ihs
ncp ,,
 ) are defined as [8-

11]: 
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For spin symmetry and p-spin symmetry, respectively,  the 

operator 2
ncr  equal ( L2r  and p

L2r ) [34, 75, 76, 77, 

78, 79, 80], while the new operators  ncts rV ,  nc
glt
eff rU , 

  21  ncrkk  and   21  ncrkk  in the DDT symmetries, are 

expressed as: 
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and 
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Substituting Eqs. (29a) and (29b) into Eqs. (25) and (26), we 

obtain the following two similar Schrödinger equations: 
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By comparing (Eqs. (12) and (13)) and (Eqs. (30) and (31)), we 

observe two additive potentials (  rpert
ts and  rpert

ts ). 

Moreover, these terms are proportional to the infinitesimal 

noncommutativity parameter  . From a physical point of 

view, this means that these two spontaneously generated terms 

(  rpert
ts  and  rpert

ts ) as a result of the topological properties 

of the deformation space-space can be considered very small 

compared to the fundamental terms (  rts  and  rts ), 

respectively. A direct calculation gives (
 

r

rVts




 and 

 
r

rU psglt
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  /

) as follows: 
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Substituting Eqs. (34a) and (34b) into Eqs. (32) and (33), we 

obtain spontaneously generated terms (  rpert
ts  and  rpert

ts ) 

as follows: 
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and 
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Furthermore, using the unit step function (also known as the 

Heaviside step function  y  or simply the theta function) we 

can rewrite the global induced two potentials (  rpert
tst _  and 

 rpert
tst ) for a spin and p-spin symmetries corresponding 

upper and lower components (  sF s
nk  and  sG s

nk ) and (  sF p
nk  

and  sG p
nk ), respectively as:  
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and 

         
 
 










 

 sy.spin -p of  LCfor    

 sy.spin -p of    for   UC 

_

r

r

ErErr

pert
ts

pert
ts

pts
nc

pert
ts

pts
nc

pert
ts

pert
tst 

            (37b) 

 

Here UC and LC are the upper components and lower 

components. The step function  y  is given by: 
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For spin symmetry, we first consider Eq. (30), which contains 

the improved Trigonometric scarf potential within the 

generalized (Hulthén and Coulomb)-like tensor interaction in 

the deformation of Dirac theory symmetries. It can be solved 

exactly only for 0k  and  1k  in the absence of like tensor 

interaction ( 0cH and 0HH ) since the two centrifugal 

terms (proportional to   21  rkk  and   41  rkk ) vanish. In 

the case of arbitrary k , an appropriate approximation should 

be employed on the centrifugal terms. We apply the following 
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improved approximation which was applied by Greene and 

Aldrich [83]: 
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with  2 . It should be noted that many researchers have 

used this approximation in relativistic and non-relativistic 

cases [84, 85, 86]. For p-spin symmetry, we now consider Eq. 

(31) and will follow similar steps as in the spin symmetry case 

in the deformation of Dirac theory symmetries. Same as before, 

Eq. (31) cannot be solved exactly for 0k  and 1k  without 

tensor interaction, since the two centrifugal terms (proportional 

to   21  rkk  and   41  rkk ). Applying the approximations 

Eq. (37) to the centrifugal terms of Eqs. (35) and (36), the 

general form of the additive potentials  spert
ts  and  spert

ts  

will be as follows: 
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with 
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Notably, the results yielded by the Greene and Aldrich 

approximation, for small values 1r , are in good agreement 

with those obtained using other methods. We have replaced the 

terms ((   41  rkk  and   41  rkk ) with the approximation 

in Eq. (38). The trigonometric scarf potential including a 

generalized (Coulomb-Hulthén)-like tensor interaction is 

extended by including new additive potentials  rpert
ts  and 

 rpert
ts   expressed to the radial terms: 

 

       

      



















.and,

,,,,

4

3

4

2

3

43

2

24

111

1111

1

s

s

s

s

s

s

s

s

s

s

s

s

s
                   (41) 

to become the improved Trigonometric scarf potential 

including an improved generalized (Coulomb-Hulthén)-like 

tensor interaction in DDT symmetries. The newly generated 

two effective potentials (  rpert
ts  and  rpert

ts ) are also 

proportional to the infinitesimal vector  . This allows us to 

consider the new additive parts of the effective potential (

 rpert
ts  and  rpert

ts ) as perturbation potentials compared to 

the main potentials  rts  and  rts  which are also known 

with the parent potential operator in the symmetries of DDT, 

that is, the two inequalities (    rr ts
pert
ts   and 

   rr ts
pert
ts  ) have become achieved. That is all physical 

justifications for applying the time-independent perturbation 

theory become satisfied to calculate the expectation values of 

previous radial terms. This allows us to give a complete 

prescription for determining the energy level of the generalized 

 thppp ssmlmln ,,,,,,  excited states. 

           

B The expectation values under the ITSP-ICHLTi in the 

DDT for spin symmetry 

 

    In this subsection, we want to apply the perturbative theory, 

in the case of deformation Dirac theory symmetries, we find 
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symmetry taking into account the wave function which we 

have seen previously in Eq. (14a). Thus, after straightforward 

calculations, we obtain the following results: 
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the values s
new  equal 122 3  s
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s fn  . We have used 

useful abbreviations 
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 to avoid 

the extra burden of writing equations. Furthermore, we have 

applied the property of spherical harmonics, which has the 

form 
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Introducing the change of variable s  rexp . This maps 

the region  r0  to 10  s  and allows us to obtain 

s
dsdr  , and transform Eqs. (42a, 42b, 42c, 42d, 42e, 42f and 

42j) in the following form: 
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We can evaluate the above integrals either in a recurrence way 

through the physical values of the principal quantum number (

,...1,0n ) and then generalize the result to the general 

 thsmln ,,,  excited state or we use the method proposed by 

Dong et al. [87] and applied by Zhang [88], to obtain the 

general excited state directly. We calculate the integrals in Eqs. 

(43a, 43b, 43c, 43d, 43e, 43f and 43j) with the help of the 

special integral formula: 
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here  zcccF ;;, 32112  is the generalized hypergeometric 
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here  
n

c1  denote to the rising factorial or Pochhammer symbol 

while     denoting the usual Gamma function. By 

identifying Eq. (44) with the integrals, we obtain the following 

results: 

 

 

 

 








 














1;2,21;22,, 

2

222

323

3
2

1

s
nk

ss
nk

s
nk

s
nk

s
nk

s

ns
nk

tss
nlms

TfXnF

T

f

NM





            (45a) 

 

 

 








 










 



1;1,21;2,, 

1

212

323

3
2

2

s
nk

ss
nk

s
nk

s
nk

s
nk

s

ns
nk

tss
nlms

TfXnF

T

f

NM





                (45b) 

 

 

 
 








 










 



1;1,21;12,,

 
1

1222

323

3
2

3

s
nk

ss
nk

s
nk

s
nk

s
nk

s

ns
nk

tss
nlms

TfXnF

T

f

NM





               (45c) 

 

 

 
 








 










 



1;1,21;22,, 

1

2212

323

3
2

4

s
nk

ss
nk

s
nk

s
nk

s
nk

s

ns
nk

tss
nlms

TfXnF

T

f

NM





             (45d) 

 



Abdelmadjid Maireche 

Lat. Am. J. Phys. Educ. Vol. 17, No. 1, March, 2023 1310-10 http://www.lajpe.org 
 

 

   

 

 

3
2

5

3 2 3

2 1 2 1

 , , 2 1;1 2 , ;1 ,

s s

nk
s ts ns

nknlms s

nk

s s s s

nk nk nk

f
M N

T

F n X f T






   




  

               (45e) 

 

 

   

 

 

3
2

6

3 2 3

2 2 2 2

 , , 2 2;1 2 , ;1 ,

s s

nk
s ts ns

nknlms s

nk

s s s s

nk nk nk

f
M N

T

F n X f T






   




  

             (45f) 

 

 

   

 

 

3
2

7

3 2 3

2 3 2 2

1

 , , 2 2;1 2 , 1;1 ,

s s

nk
s ts ns

nknlms s

nk

s s s s

nk nk nk

f
M N

T

F n X f T






   


 

   

            (45j) 

 

with s
nkX and s

nkT  are equal 122 3  nf s
nk

s  and 

s
nk

s f22 3    respectively. 

 

C The expectation values under the ITSP-ICHLTi in the 

DDT for p-spin symmetry 

 

In this subsection, we want to apply the perturbative theory, in 

the case of deformation Dirac theory symmetries, we find the 

expectation values:  
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, respectively for p-spin symmetry with tensor 

interaction taking into account the wave function which we 

have seen previously in Eq. (14a). On a careful inspection of 

the upper wave function  rFnk  and the lower wave function 

 rGnk  in Sec. 3, we discovered that the upper component

 rFnk  can be transformed into the lower component  rGnk  

and vice versa. This can be achieved by using the following 

transformations in the  p
nk

pp
nk fN  , , 3  and  s

nk
ss

nk fN  , , 3  (in 

Eqs. (15) and (16)): 
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This allows us to obtain the expectation values for p-spin 

symmetry from Eqs. (45a, 45b, 45c, 45d, 45e, 45f and 45j) 

without re-calculation, as follows: 
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with 
p
nkX  and 

p
nkT  are equal 122 3  nf p

nk
s  and 

p
nk

s f22 3  , respectively. 
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D The corrected energy for the ITSP-ICHLTi in 

deformation Dirac theory symmetries 

 

The main goal highlighted in this subsection is to find the 

contribution resulting from topological properties using our 

proper strategy that we have successfully applied in previous 

works and that we strive to develop in each new work. We can 

say that the global relativistic energy in the perspective of 

deformation Dirac theory is produced with the ITSP-ICHLTi 

model as a result of a major contribution to relativistic energy 

known in the literature under the TSP-ICHLTi model in the 

usual Dirac theory and which we paved the way for through a 

quick look at the spin(p-spin)-symmetry in Eqs. (17) and (18), 

while the new contribution is produced from the topological 

properties under space-space deformation, which can be 

evaluated through several contributions. We will examine three 

of them. 

 

D1 The corrected spin-orbital energy for the ITSP-ICHLTi 

in deformation Dirac theory symmetries 

 

The first is produced by the perturbed spin-orbit effective 
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pp
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vector   is arbitrary. We have oriented the two (spin-spin- s  

and spin-
ps ) of the fermionic particles to become parallel to 

the vector   which interacted with improved Trigonometric 

scarf potential, including generalized (Coulomb-Hulthén)-like 

tensor interaction. We aligned the fermionic particles' two spin-

s  and spin-
ps to become parallel to the vector , which 

interacted with a trigonometric scarf potential, including a 

generalized (Coulomb-Hulthén)-like tensor interaction. 

Furthermore, we replace the new spin-orbit couplings ( LS ,
pp

SL ) with the corresponding new physical forms 
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and 
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direct consequence, the partially corrected energies sso
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The global two expectation values 
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where  7,1  while (
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are determined from Eq. (40) and (Eqs. (45) and (47)), 

respectively. 
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for a spin(p-spin)-symmetry, respectively. These data allow for 

the discovery of the new energy shift smg
tsE  (

Hc HHVn ,,,, 0 , , m ) smg
tsE   and pmg

tsE  (

Hc HHVn ,,,, 0 , ,
pm ) pmg

tsE   due to the perturbed 

Zeeman effect created by the influence of the ITSP-ICHLTi 

model for the  thppp ssmlmln ,,,,,,  excited state in the 

deformation Dirac theory symmetries as follows: 
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D3 The corrected rotating energy for the ITSP-ICHLTi in 

the Dirac theory symmetries 

 

We are about to find the third part, which is no less essential 

than the first two sections discussed the development of self-

energy values as a result of deformation in space-space. As 

indicated in Eqs. (38) and (39), this physical phenomenon is 

caused by the influence of perturbed effective potentials (

 rpert
ts ,  rpert

ts ). The fermionic particles are thought to be 

rotating at an angular velocity . By substituting for the 

arbitrary vector  , the characteristics of this subjective 

phenomenon can be identified  . This allows us to replace 

the two couplings ( L , p
L ) for spin-symmetry and p-spin-

symmetry, respectively, with ( L  , p
L ) as follows: 
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


pp

L

L

L

L
 .                         (51) 

 

Here   is just an infinitesimal real proportional constant. We 

can express the effective potentials (  srotts
pert
 ,  srotts

pert
 ) 

which induced the rotational movements of the fermionic 

particles as follows: 
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 (52) 

 

To simplify the calculations, we chose a rotational velocity   

parallel to the ( Oz ) axis  ze ; this of course does not 

change the physical characteristics of the investigated problem 

as much as it simplifies the calculations. The spin-orbit 

couplings are then transformed into new physical phenomena 

as follows: 
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All of this physical information enables the discovery of the 

new corrected energies srot
tsE  ( Hc HHVn ,,,, 0  m ) and 

prot
tsE  ( Hc HHVn ,,,, 0 ,  ,

pm ) due to the perturbed 

effective potentials (  srotts
pert
  and  srotts

pert
 ) which are 

generated automatically by the influence of the improved 

Trigonometric scarf potential including generalized (Coulomb-

Hulthén)-like tensor interaction for the 

 thppp ssmlmjln ,,,,,,,  excited state in DDT symmetries as 

follows: 
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p
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p
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E

E

ppp

                      (54) 

 

It is worth noting that the authors of ref. [89] investigated 

rotating isotropic and anisotropic harmonically confined ultra-

cold Fermi gases in two and three-dimensional space at zero 

temperature, but in this case, the rotational term was added to 

the Hamiltonian operator, whereas in our case, the two rotation 

operators (   Lsrotts
pert
  and   protts

pert s L
 ) appear 

automatically due to the augmented symmetries resulting from 

the deformation of space-space under the improved 

Trigonometric scarf potential including generalized (Coulomb-

Hulthén)-like tensor interaction. For fermionic particles/anti-

particles, the eigenvalues (  sljF ,,  and  pp sljF ,, ) of the 

operations (
2

G  and 
2p

G ) are equal to the following values: 
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2/4/3)1()1(,,
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pppp lljjsljF
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respectively. Thus, for the case of spin-1/2 fields, the possible 

values of j  are ( 2/1l  and )2/1pl  for spin symmetry 

 sljF ,,  and pseudospin symmetry  pp sljF ,,  , as follows: 
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and 
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The global relativistic energy 
sts

ncE 
( n , , 0V , cH , HH , ,

,  , j , l , s , m ) (
sts

ncE 
, in short) and  

pts
ncE 

( n , , 0V , cH ,
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HH , , ,  , j , pl , ps , pm ) ( sts
ncE  , in short)for spin-1/2 

with improved Trigonometric scarf potential, including a 

generalized (Coulomb-Hulthén)-like tensor interaction, in the 

DDT symmetries, corresponding to the generalized  

 thppp smlsmln ,,,,,,  excited states: 
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and 
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Where s
nkE  and 

p
nkE  are usual relativistic energies under 

trigonometric scarf potential including a (Coulomb-Hulthén)-

like tensor interaction obtained from equations of energy in 

Eqs. (17) and (18). here UP and DP are Up polarity and Down 

polarity, respectively. We can now generalize our obtained 

energies sts
ncgE 

  and pts
ncgE 

  which were produced with the 

globally induced two potentials  rpert
tst _  and  rpert

tst _  for a 

spin and p-spin symmetries corresponding (UC) and (LC) (

 sF s
nk  and  sG s

nk ) and (  sF p
nk  and  sG p

nk ), respectively as:  
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and 
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VI. THE IMPROVED TRIGONOMETRIC SCARF 

POTENTIAL PROBLEM IN D-NRQM 

SYMMETRIES: 
 

To achieve a nonrelativistic study of the improved 

trigonometric scarf potential, we will apply the principle of the 

nonrelativistic limit, in deformation nonrelativistic quantum 

mechanics (D-NRQM) symmetries through two stages. The 

first step corresponds to the nonrelativistic limit, in usual 

nonrelativistic quantum energy. This is done by applying the 

following steps, we replace:    0,0,0,, sHc CHH ,  

,2 ME s
nk  nr

nl
s
nk EME   and )1()1(  llkk . 

This allows us to obtain the nonrelativistic energy levels as: 
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Now, the second step corresponds to the transformation of the 

relativistic coefficients s
nkT    7,1  under the previous 

correspondence to the new nonrelativistic coefficient: 
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This allows us to re-export the relativistic expectation values 

of spin symmetry 
 
ts

nlms
Z ( n , , 0V , cH , HH ) in Eq. (49) 

from the corresponding nonrelativistic expectation values 

 
 0,, VnZ

nrts

nlms



 as: 
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which allows us to express the nonrelativistic correction energy  
ts

nrncE   ( n , , 0V , cH , HH , , ,  , j , l , s , m  ) produced 

by the improved Trigonometric scarf potential problems as 
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 (62) 

 

According to the time-independent perturbation theory, in D-

NRQM symmetries, considering that the improved 

Trigonometric scarf potential is combined from the main part 

(Trigonometric scarf potential in NRQM symmetries) and a 

perturbed part that can be considered an infinitesimal term 

compared to the principal term, thus, the global nonrelativistic 

energy ts
nrncE  ( n , , 0V , , ,  , j , l , s , m ) is the sum of 

usual energy
ts
nlE  in Eq. (59), and the obtained infinitesimal 

correction 
ts

nrncE  , in Eq. (62), as follows: 
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It should be noted that the corrected energy ts
nrncE   expressed 

in Eq. (62) is due to the effect of the perturbed potential 

 rV ts
pert : 

 

 
     2

4 2

11
















 O

r

rV

rr
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The first term in Eq. (64) is due to the centrifuge term 

  21  ncrll  in D-NRQM symmetries, which equals the usual 

centrifuge term   21  rll plus the perturbative centrifuge term 

  L
41  rll  while the second term is produced with the 

effect of the improved Trigonometric scarf potential. This is 

one of the most important new results of this research. It is 

worth noting that for the three-simultaneous limits  

   0,0,0,,   , we recover the energy equations for the 

spin symmetry and the p-spin symmetry under the 

Trigonometric scarf potential, including a generalized 

(Coulomb-Hulthén)-like tensor interaction, which is presented 

in the ref. [7]. 

 

 

VI. CONCLUSIONS  
 

In summary, this work presents an approximate analytical 

solution of the 3-dimensional deformed Dirac equation with the 

improved Trigonometric scarf potential within the generalized 

(Hulthén and Coulomb) like tensor interaction under 

pseudospin and spin symmetry limits with an arbitrary spin-

orbit coupling quantum number k . To do so, we have dealt 

with the centrifugal potential term using the Greene-Aldrich 

approximation. To do so, we have dealt with the centrifugal 

potential term using the Greene-Aldrich approximation. We 

obtained new approximate bound-state energies that appear to 

be sensitive to the quantum numbers (
ppp ssmlmlkj ,,,,,,, ), 

potential depths ( Hc HHV ,,0 ) of the studied potentials, 

potential range  , and noncommutativity parameters ( ,,  

) under the condition of spin and pseudospin symmetry. We 

also ended our research with this treatment of the 

nonrelativistic limit of the improved Trigonometric scarf 

potential in D-NRQM symmetries. It is worth mentioning that 

for all cases, to achieve the three simultaneous limits 

   0,0,0,,   , the ordinary physical quantities are 

recovered in ref. [7]. Finally, a feature of a noncommutative 

geometry on the 3-dimensional deformed Dirac equation with 

the improved Trigonometric scarf potential within the 

generalized (Hulthén and Coulomb) like tensor interaction 

would be the presence of many physics phonemes, such as 

spin-orbit and pseudospin-orbit, modified Zeeman effect, and 

others, which cause the behavior of topological properties of 

deformed space-space. However, when compared to related 

work in the literature, our new results revealed a great 

improvement. 
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