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Abstract 
In this paper we have presented the necessity of defining the domain of the operators in quantum mechanics. We have 

investigated some controversial issues concerning algebra of unbounded operators. Our main focus has been the 

position and momentum operators. We have also shown the necessity of the presence Schwartz functions in quantum 

mechanics. The original aim of this paper is to present some mathematical issues of quantum mechanics in an 

understandable form for physics students. 
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Resumen 
En este artículo hemos presentado la necesidad de definir el dominio de los operadores en mecánica cuántica. Hemos 

investigado algunas cuestiones controvertidas relativas al álgebra de operadores ilimitados. Nuestro principal enfoque 

ha sido los operadores de posición e impulso. También hemos demostrado la necesidad de la presencia de funciones 

de Schwartz en la mecánica cuántica. El objetivo original de este artículo es presentar algunas cuestiones matemáticas 

de la mecánica cuántica de una forma comprensible para los estudiantes de física. 
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I. INTRODUCTION  
 

There is a well-known reference concerning advanced 

mathematical subjects in physics. For example, algebra 

operators in quantum mechanics [1]. However, this book is 

not relatively simple for students. In this regard, some 

people have tried to understand some of the mathematical 

concepts of quantum mechanics for students [2, 3, 4]. Here 

we intend to express some modern mathematical concepts in 

understandable forms. At first, we introduce the domain of 

the operators and indicate that they have an important 

contribution in distinction between self-adjoint and 

Hermitian operators. Furthermore, we introduce bounded 

and unbounded operators in a nutshell. Then after 

mentioning some of the operator's algebraic properties, we 

introduce Schwartz space and functions. Finally, we 

investigate the discontinuity of the wave functions by 

considering that they are into the domain of the position and 

momentum operators or not. 

 

 

II. DOMAIN OF AN OPERATOR 
 

From a mathematical point of view, every operator in the 

Hilbert space has two important points: the operator's action 

and its domain [2]. The action is what the operator does to 

the functions on which it acts. The domain is the specified 

set of functions on which the operator acts [2]. Basically, 

quantum mechanics text books do not refer to the domain of 

the operators [2, 4]. Of course, there are many mathematical 

points which are not extensively discussed in text books of 

quantum mechanics. Perhaps there is not enough space or 

background to discuss them.  

An operator 𝐴 , on the Hilbert space 𝐻 is a linear map 

 

𝐴: 𝐷(𝐴) → 𝐻, 
𝜓 → 𝐴𝜓, 

 

where 𝐷(𝐴) represents a dense linear subspace of 𝐻. This 

subspace is called the domain of 𝐴 [5].  

The necessity of definition of the domain in quantum 

mechanics is determined when we encounter the functions 

which are square-integrable but does not vanish at infinity. 

Some examples of such functions are available 

(Mathematical Surprises and Dirac’s Formalism in Quantum 

Mechanics, F. Gieres, 2001) [5]. Later on, we will 

investigate this issue in other part.  

An operator 𝐴 on a Hilbert space 𝐻 is said to be 

Hermitian (or symmetric in mathematics literatures), if we 

have 

 
〈𝑔, 𝐴𝑓〉 = 〈𝐴𝑔, 𝑓〉 for all 𝑔 , 𝑓 ∈ 𝐷(𝐴) and 

𝐷(𝐴) ⊂ 𝐷(𝐴∗) . 
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An operator 𝐴 on a Hilbert space 𝐻 is said to be Self-

adjoint, if 𝐴 is densely defined and 𝐷(𝐴) = 𝐷(𝐴∗). 

Indeed, why is the domain of the adjoint of the operator 

bigger than the domain of the operator itself for Hermitian 

operators? Is there a proof for that or it is only a definition? 

Suppose the domain of 𝐴∗ is the set of all members 𝑥 in 

the Hilbert space such as 𝑔𝑥 with  

𝑔𝑥(𝑦) = 〈𝑥, 𝐴𝑦〉 is well-defined and continuous on the 

domain of 𝐴. Now consider 𝑧 in the domain of 𝐴. For all  

𝑦 ∈ 𝐷(𝐴) we can write 𝑔𝑧(𝑦) = 〈𝑧, 𝐴𝑦〉 = 〈𝐴𝑧, 𝑦〉 as 𝐴 is 

Hermitian. Also, the right- hand side is continuous in terms 

of 𝑦, as it is the inner product of something with 𝑦. So 𝑔𝑧 is 

well-defined and continuous on 𝐷(𝐴), which means that 𝑧 is 

in the domain of 𝐴∗. That is any member of the domain of 𝐴 

is a member of the domain of 𝐴∗. Hence 𝐴 is a subset of 𝐴∗.  

Note that in this paper we use * symbol for the adjoint of 

operators, similar to mathematics literature. 

 

 

III. BOUNDED OPERATORS 
 
A linear operator 𝐴: 𝐻 → 𝐻 is bounded if and only if there is 

a constant 𝑐 such that for all vectors 𝜓 ∈ 𝐷(𝐴), we have 

 

||𝐴|| ≤ 𝑐||𝜓||,                                    (1) 

 

where we mean by||𝐴|| the norm of  𝐴.  Clearly the above 

condition indicates that the spectrum of 𝐴 is bounded [1]. 

Some of the important examples of bounded operators in 

quantum mechanics are unitary operators, projection 

operators and parity.  

 

 

IV. UNBOUNDED OPERATORS 

 

The truth is that in most cases, we deal with unbounded 

operators in quantum mechanics. On the other hand, from a 

philosophical perspective [6] employing of unbounded 

operators in quantum mechanics leads directly to a kind of 

incompleteness.   

For these operators the condition (1) does not always 

hold. In fact, they are never defined on the whole Hilbert 

space and we have to consider the respective domain of 

these operators.  

The most important unbounded operators in quantum 

mechanics are position and momentum. The position 

operator 𝑋 for a particle on the real line is the multiplication 

by x on 𝐿2(𝑹, 𝑑𝑥) 

 

𝑋𝜓(𝑥) = 𝑥𝜓(𝑥),       for all 𝑥 ∈ 𝑹. 
 

The maximal domain of position operator is the one which 

ensures that the function 𝑋𝜓 exists and it still belongs to the 

Hilbert space 

 

𝐷𝑚𝑎𝑥(𝑋) = {𝜓 ∈ 𝐻} = {𝜓 ∈ 𝐿2(𝑹, 𝑑𝑥)|,      ||𝑋𝜓||
2

≡

                                  ∫ 𝑑𝑥 𝑥2|𝜓(𝑥)|2 < ∞}.                          (2) 

From the action of the position operator and its domain we 

simply conclude it is essential that lim
𝑥→±∞

|𝑥𝜓(𝑥)| = 0.  

The maximal domain of the momentum operator 𝑃 =

−𝑖
𝜕

𝜕𝑥
 also on the Hilbert space 𝐿2(𝑹, 𝑑𝑥) is 

 

𝐷𝑚𝑎𝑥(𝑃) = {𝜓 ∈ 𝐻} = {
𝜓 ∈ 𝐿2(𝑹, 𝑑𝑥)|     

       𝜓′ ∈  𝐿2(𝑹, 𝑑𝑥)
}.      (3) 

 

In the definition of (3), 𝜓′ ∈ 𝐿2(𝑹, 𝑑𝑥) means that the 

derivative 𝜓′ exists almost everywhere and belongs to 

𝐿2(𝑹, 𝑑𝑥) [5]. For example, consider a following square-

integrable function 

 

𝑓(𝑥) =
𝑥

1
3

1+𝑥2. 

 

One easily finds that the derivative of 𝑓(𝑥) is not square-

integrable and then does not belong to the momentum 

operator.  

According to the definition of momentum operator and 

using integration by parts one can get 

 

(𝑔, 𝑃𝑓) − (𝑃𝑔, 𝑓) = [−𝑖𝑔(𝑥)̅̅ ̅̅ ̅̅ 𝑓(𝑥)] ∞
−∞

 .          (4) 

 

Since 𝑓 and 𝑔 are square integrable, one usually concludes 

that these functions vanish for 𝑥 → ±∞ [5]. However, as 

mentioned in section II, not all square-integrable functions 

vanish at infinity or even to a finite value. There are plenty 

counterexamples for that. However, most of these functions 

do not satisfy the condition (3). Now a delicate question can 

be pointed out. Is there any function with this property, 

which is square-integrable but it doesn't tend to zero at 

infinity, but to be in the domain of the momentum operator? 

The short answer is: No. There is no such function. 

One can find the exact solution to this question in [7]. 

Note that in ref. [7] is used from modern mathematical 

concept such as ''weak derivative'' but here we provide a 

simpler argument. Also, there is a similar discussion 

concerning generalized momentum operators in research 

done by M. Jafari Matehkolaee, 2021 [8]. As for the 

research for the momentum operators in curved spaces (M. 

Jafari Matehkolaee, 2019 and 2023 respectively) [9, 10] and 

their references, suppose 𝑓 is such a function which 

mentioned in above question. Let's call it complex 

conjugate, that is 𝑓̅ = 𝑔. As 𝑓 is square-integrable so is 𝑔. 

Also, we assume that 𝑓 is member of the momentum 

operator hence according to (3), 𝑓′ is also square-integrable. 

This indicates that (𝑔, 𝑓′) is well-defined. One can write 

 

(𝑔, 𝑓′) =
1

2
∫ (𝑓′)2𝑑𝑥

+∞

−∞
.                        (5) 

 

This integral is equal to the limit of 𝑅 → +∞ and 𝑆 → −∞ 

of [𝑓2(𝑅) − 𝑓2(𝑆)]. Clearly this limit exists means that the 

limit of 𝑓2(𝑅) as 𝑅 → +∞ exists and the limit of 𝑓2(𝑆) as 

𝑆 → −∞ exists. In general, we cannot infer that both limits 

exist; only their difference exists. But in our case, it is true. 

So 𝑓2 tends to some limits for +∞ and −∞. Hence |𝑓|2 
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tends to some limits for +∞ and −∞. If either of those 

limits is nonzero, then the integral of |𝑓|2 over the real line 

will be infinite. But as 𝑓 is square-integrable this cannot 

happen. So |𝑓|2 tends to zero at both plus and minus 

infinity, and hence 𝑓 tends to zero at these limits.  

 

 

V. ALGEBRAIC PROPERTIES OF OPERATORS 
 

It is seen, the basic difference between bounded operators 

and unbounded operators is the domain on which they are 

defined. Domains of unbounded operators are proper 

subspaces of Hilbert space. Because of this fact, many 

aspects of the theory of unbounded operators are somewhat 

counterintuitive. For example, the algebraic rules for sums 

and products break down. 

Theorem: 

1) Let 𝐴 and 𝐵 be operators so that (𝐴 + 𝐵) is densely 

defined then (𝐴 + 𝐵)∗ ⊃  𝐴∗ + 𝐵∗. 

The proof of this theorem is in [11]. However, let us 

provide a simple example. Consider 𝐵 = −𝐴 then, 

obviously the domains of 𝐴 and 𝐵 are the same and the case 

is the same for 𝐴∗ and 𝐵∗ as well. But it could happen that 

the domain of 𝐴∗ is not the whole Hilbert space then the 

domain of 𝐴∗ + 𝐵∗ is the same as the domain of 𝐴∗, while 

𝐴 + 𝐵 = 0 so that the domain of (𝐴 + 𝐵)∗ is the whole 

Hilbert space. 

Now we can provide another instance. As we know the 

Hermitian part of arbitrary operator is given by 

 

𝐴𝐻 =
𝐴+𝐴∗

2
. 

 

According to the above theorem one can write 

 

𝐷(𝐴 + 𝐴∗)∗ ⊃ 𝐷( 𝐴∗ + 𝐴∗∗). 

 

If we assume that 𝐴∗∗ = 𝐴, then one can conclude 

 

𝐷(𝐴𝐻)∗ ⊃ 𝐷( 𝐴𝐻). 

 

This conclusion is completely consistent to the definition of 

the Hermitian operators in section II. 

The proof of this theorem can also be seen in research by 

J. Weidmann (1980) and Akhiezer-Glazman (1981) 

respectively [11, 12].  

The equality situation is guaranteed if one of the 

operators is bounded [11, 12]. But in the latter case, if one 

of the operators is bounded inversely, then the equality is 

persuaded [11]. For example, 𝐴 is invertible and 𝐴−1 is 

bounded, then we can show that (𝐵𝐴)∗ =  𝐴∗𝐵∗. In this 

case, we can argue without using of the domain of the 

operators (it will be different from what was expected by J. 

Weidmann’s research [11]) so consider 

 𝐴𝐴−1 = 𝐼 then 𝐵𝐴𝐴−1 = 𝐵 and one can write 

(𝐵𝐴𝐴−1)∗ = 𝐵∗ since 𝐴−1 is assumed to be bounded so it's 

safe to write (𝐴−1)∗(𝐵𝐴)∗ = 𝐵∗ and hence 

 

(𝐵𝐴)∗ =  𝐴∗𝐵∗. 

 

Unfortunately, none of these conditions is valid for position 

and momentum operators. The operators 𝑋 and 𝑃 are 

unbounded and although 𝑃 is invertible, the momentum 

inverse operator 
1

𝑃
 is not bounded. 

 
1

𝑃
= 𝑖 ∫ 𝑑𝑥′

𝑥

−∞
,  

𝐷 (
1

𝑃
) = {𝜓(𝑥) ∈ 𝐿2(𝑹, 𝑑𝑥) |  ∫ 𝜓(𝑥 ′)𝑑𝑥′

∞

−∞
= 0}.  

 

How can the equality of the theorem be concluded? In 

particular to deal with the operators 𝑋 and 𝑃, i.e., how is the 

relationship between (𝑋 + 𝑃) and its adjoint?  

Now at first, consider 𝑎 = 𝐴 + 𝐵. According to the 

definition of the adjoint of the operator one can write, 

𝑓 , 𝑔 ∈ 𝐷(𝑎), 

 

(𝑔, 𝑎𝑓) = (𝑔, (𝐴 + 𝐵)𝑓) = ((𝐴 + 𝐵)∗𝑔, 𝑓),       (7) 

or 

 

(𝑔, 𝑎𝑓) = (𝑔, (𝐴 + 𝐵)𝑓) = (𝑔, 𝐴𝑓) + (𝑔, 𝐵𝑓) =
                                               ((𝐴∗ + 𝐵∗)𝑔, 𝑓). 

 

It seems that we can conclude that 

 

((𝐴 + 𝐵)∗𝑔, 𝑓) = ((𝐴∗ + 𝐵∗)𝑔, 𝑓).            (9) 

 

However, the vector (𝐴∗ + 𝐵∗)𝑔 might not even exist since 

the operators 𝐴 and 𝐵 are unbounded. We know, in general, 

what the theorem (1) says is true. However, if the domains 

are equal then it is not a problem and this is exactly the 

difference between bounded and unbounded operators since 

in the bounded case the domain of the operator is the whole 

Hilbert space and we do not have to specify its domain. 

Fortunately, there is a space called Schwartz space in 

which represents an invariant domain for the position and 

momentum operators [5]. Therefore, the concern we had 

about Hilbert space's functions at infinity now we do not 

have in Schwartz space. 

 

 

VI. THE NECESSITY OF SCHWARTZ 

FUNCTIONS IN QUANTUM MECHANICS  
 

There is a delicate point in Quantum Physics (S. 

Gasiorowicz, 2003) [13] concerning square-integrable 

functions: 

''Since we may need to deal with integrals of the type 

 

∫ 𝜓(𝑥, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑥𝑛 𝜓(𝑥, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑥,
∞

−∞
                   (10) 

and 

 

∫ 𝜓(𝑥, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ (
𝜕

𝜕𝑥
)𝑛 𝜓(𝑥, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑥

∞

−∞
.                 (11) 

 

We will require that the wave functions 𝜓(𝑥, 0) go to zero 

rapidly as 𝑥 → ±∞, often faster than any power of 𝑥 ''. 

(6) 

(8) 
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From this statement, we find that wave functions must 

have certain characteristics. For example, they should be 

continuous, differentiable and bounded at infinity. As we 

have seen, all of the square-integrable functions in Hilbert 

space do not have these properties.  

Instead, in Schwartz space, functions are smooth, i.e., 

one can differentiate those infinite times. Also, Schwartz 

functions are called functions of rapid descent. That is along 

with their derivatives, as |𝑥| → ∞ they tend to zero faster 

than any inverse power of 𝑥 does.  

The space of all Schwartz functions is called Schwartz 

space, and it is denoted by 𝑆(𝑹𝑛). 

the Schwartz space 𝑆(𝑹) is the vector space of smooth 

functions 𝑓: 𝑅 → ℂ , such that for all 𝑛 , 𝑚 = 0,1,2, … , we 

have 

 

lim
𝑥→±∞

|𝑥𝑛 𝑑𝑚𝑓

𝑑𝑥𝑚| = 0.                          (12) 

 

It can be shown that 𝑋𝜓(𝑥) = 𝑥𝜓(𝑥) defines a map 

𝑋: 𝑆(𝑹)  → 𝑆(𝑹)  , also 𝑃𝑓 = −𝑖
𝜕

𝜕𝑥
𝑓 defines a map 

𝑃: 𝑆(𝑹)  → 𝑆(𝑹)  . It is easily seen that position and 

momentum operators have a common domain of self-

adjointness in Schwartz space. Since  𝑋 and 𝑃 in Schwartz 

space are symmetric so one can write (𝑋 + 𝑃) ⊂ 𝑋∗ + 𝑃∗ or 

(𝑋 + 𝑃)∗ ⊂ 𝑋∗ + 𝑃∗ and according to theorem (1) one can 

conclude that (𝑋 + 𝑃)∗ = 𝑋∗ + 𝑃∗. 

There are two operators in quantum mechanics which 

are introduced as creation and annihilation operators so that 

those are linear complex combination of position and 

momentum operators. These operators are given by 

 

𝑎 = (𝑋 + 𝑖𝑃) and 𝑎+ = (𝑋 − 𝑖𝑃). 

 

where we assumed constant coefficient equals one. In 

textbooks of quantum mechanics  𝑎 and 𝑎+ are considered 

the adjoint of each other, but actually they are not the 

adjoint one of the other [14]. Here we can indicate 𝑎+ can 

be just a restriction of the adjoint of 𝑎 to a suitable domain.  

For 𝑓 ∈ 𝐷(𝑎) and 𝑔 ∈ 𝐷(𝑎∗) we can write: 

 

(𝑔, (𝑋 + 𝑖𝑃)𝑓) = ((𝑋 + 𝑖𝑃)∗𝑔, 𝑓).                  (13) 

 

The left-hand side is equals to: 

 

(𝑔, 𝑋𝑓) + (𝑔, 𝑖𝑃𝑓) = (((𝑋 − 𝑖𝑃))𝑔, 𝑓).            (14) 

 

One can conclude ∈ 𝐷(𝑎+) , that every 𝑔 which is member 

of the domain of 𝑎+ is a member of the domain of 𝑎∗ hence 

 

𝑎+ ⊂ 𝑎∗ and it can be shown similarly 𝑎 ⊂ (𝑎+)∗. 

 

It seems we should stress that if one deals with Schwartz 

space, the momentum operator one find is not self-adjoint 

but it is only Hermitian. That non-self-adjoint operator is 

however essentially self-adjoint which means that it admits 

a unique self-adjoint extension. This unique extension is the 

true momentum operator of quantum mechanics. Indeed, 

usually one uses Schwartz space for two reasons. (1) The 

true momentum operator is uniquely determined by its 

restriction to Schwartz space. (2) In the Schwartz space, the 

said restriction is nothing but a standard derivative −𝑖
𝜕

𝜕𝑥
 , so 

there the momentum operator is a differential operator. The 

true momentum operator is not a differential operator 

because the notion of derivative one uses is the weak 

derivative [14].  

 

 

VII. CONCLUSION 
 

We have reviewed some of the properties bounded and 

unbounded operators and their algebraic properties. We 

have indicated that Schwartz functions are necessary to 

justify some unbounded operator's algebraic relationships. 

Herein, we have investigated the discontinuity of the 

functions which are square-integrable and member of the 

position operator. However, we can mention examples 

which are square-integrable, but not in the domain of the 

position operator nor momentum operator, an example can 

be found in Unbounded Operators and the Incompleteness 

of Quantum Mechanics (A. Heathcote, 1990) [6]. For these 

functions also one can use the same way we mentioned 

here.  
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