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Abstract 
The Kaniadakis distribution, proposed by the physicist Georgios Kaniadakis, represents an innovative development 
within statistical physics, emerging as a generalization of the Maxwell-Boltzmann distribution. This paper proposes a 
brief historical and epistemological trajectory of the Kaniadakis distribution, addressing its theoretical roots, 
implications, and the scientific context of its emergence. Initially, we investigate the theoretical foundations that led to 
the formulation of the Kaniadakis distribution, highlighting how challenges and limitations observed in conventional 
statistical models motivated the search for new approaches. The Kaniadakis distribution, also known as 𝜅-generalized 
statistics, emerges as a response to these challenges, introducing a new statistical mechanics consistent with the principles 
of relativity and thermodynamics. We then explore the impact of this new distribution in various fields, from particle 
physics to applications in economics, biology, and engineering. We demonstrate how Kaniadakis' approach has provided 
new perspectives and tools for dealing with systems that exhibit anomalous behaviors, which are not adequately 
described by traditional statistical theories. Finally, we discuss the epistemological developments of the Kaniadakis 
distribution within the scientific community. We analyze how its acceptance and integration into different areas of 
knowledge reflect changes in how scientists understand and model complex phenomena, and the role of theoretical 
innovation in expanding the boundaries of scientific knowledge. 
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Resumen 
La distribución de Kaniadakis, propuesta por el físico Georgios Kaniadakis, representa un desarrollo innovador dentro 
de la física estadística, surgiendo como una generalización de la distribución de Maxwell-Boltzmann. Este artículo 
propone una breve trayectoria histórica y epistemológica de la distribución de Kaniadakis, abordando sus raíces teóricas, 
implicaciones y el contexto científico de su surgimiento. Inicialmente, investigamos los fundamentos teóricos que 
llevaron a la formulación de la distribución de Kaniadakis, destacando cómo los desafíos y las limitaciones observados 
en los modelos estadísticos convencionales motivaron la búsqueda de nuevos enfoques. La distribución de Kaniadakis, 
también conocida como estadística κ-generalizada, surge como respuesta a estos desafíos, introduciendo una nueva 
mecánica estadística consistente con los principios de la relatividad y la termodinámica. Posteriormente, exploramos el 
impacto de esta nueva distribución en diversos campos, desde la física de partículas hasta aplicaciones en economía, 
biología e ingeniería. Demostramos cómo el enfoque de Kaniadakis ha proporcionado nuevas perspectivas y 
herramientas para abordar sistemas con comportamientos anómalos, que no se describen adecuadamente en las teorías 
estadísticas tradicionales. Finalmente, analizamos los desarrollos epistemológicos de la distribución de Kaniadakis 
dentro de la comunidad científica. Analizamos cómo su aceptación e integración en diferentes áreas del conocimiento 
reflejan cambios en la forma en que los científicos comprenden y modelan fenómenos complejos, y el papel de la 
innovación teórica en la expansión de los límites del conocimiento científico. 
 
Palabras clave: Conjunto, Física estadística, Distribución de Kaniadakis. 
 

 
 

I. INTRODUCTION 
 
Since its inception by the Austrian physicist Ludwig 
Boltzmann in 1872, the concept of an ensemble in physics 
has been a fundamental tool for understanding a wide variety 
of complex physical phenomena [1]. In his seminal work, 
Boltzmann introduced the idea of an ensemble as a collection 

of identical physical systems, each occupying different 
microstates but all sharing the same total energy. This 
approach, known as the statistical interpretation of 
Boltzmann entropy, laid the foundation for ensemble theory 
and had a transformative impact on the development of 
statistical physics and statistical mechanics. Ensembles in 
statistical physics are categorized into several forms, each 
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applicable to different physical contexts [3]. That is, the 
microcanonical ensemble is used to study systems with well-
defined energy, such as crystals at zero temperature, while the 
canonical ensemble is used for systems in contact with a 
thermal reservoir of fixed temperature. In addition, the grand 
canonical ensemble and the Ising ensemble offer specific 
approaches for systems with different thermodynamic and 
physical characteristics, respectively. In addition to their 
solid theoretical foundations, statistical physics ensembles 
find a wide range of applications in several scientific areas. 
From Monte Carlo simulations to predict macroscopic 
properties of materials to the study of complex biological 
systems such as proteins and DNA, these powerful 
mathematical structures provide a robust basis for 
investigating complex phenomena, even when the 
microscopic details of the systems are unknown. 
Statistical physics is a fascinating field that seeks to decipher 
the secrets of the macroscopic behavior of physical systems 
from their microscopic properties. Two distinct, yet 
complementary, approaches have emerged to address this 
challenging task: extensive and non-extensive statistical 
physics [4-6]. Extensive statistical physics, also known as 
classical statistical mechanics, lays the foundations for 
understanding physical systems such as gases, liquids, and 
crystalline solids, while non-extensive statistical physics 
emerges as a response to the challenges presented by systems 
that defy the laws of classical statistical physics. While 
extensive statistical physics has its clear limits, non-extensive 
statistical physics offers a new perspective for understanding 
complex and unconventional systems. 

In the field of statistical physics, statistical distributions 
have emerged as crucial pillars, enabling scientists to 
transcend the microscopic complexities of physical systems 
and thus decipher their macroscopic behaviors. These 
probabilistic functions, such as the Boltzmann distribution, 
the Maxwell-Boltzmann distribution, the Fermi-Dirac 
distribution, and the Bose-Einstein distribution, play a central 
role in determining the probabilities associated with energy 
states in diverse systems. 

A paradigmatic example lies in the application of the 
Maxwell-Boltzmann distribution to calculate the average 
velocity of an ideal gas. This distribution provides crucial 
insights into the behavior of the gas, such as its diffusion and 
molecular interactions. In addition, statistical distributions 
are indispensable tools for calculating thermodynamic 
properties, studying phase transitions, modeling biological 
systems, and evaluating material properties. 

The importance of statistical distributions in physics is 
underscored by the fact that they allow physicists to make 
predictions about the behavior of systems, even when the 
precise dynamics of individual particles remain unknown. 
Thus, these tools become essential for unraveling complex 
phenomena, providing a solid basis for the formulation of 
theories and predictions. Ultimately, statistical distributions 
are the foundation upon which rests the ability of physics to 
explore and understand the intricate details of the physical 
universe. 

On the horizon of contemporary physics, the Kaniadakis 
distribution [7-11] emerges as a beacon, illuminating the 
tortuous paths of physical systems that defy the conventions 

established by classical statistical physics. Introduced in 2001 
by the Greek-Italian physicist George Kaniadakis, this 
statistical distribution generalizes the well-known 
Boltzmann-Gibbs distribution, offering a multifaceted lens 
for examining systems with strong fluctuations and long-
range interactions. 

The versatile applications of the Kaniadakis distribution 
span a variety of fields, from the physics of critical systems 
and nonequilibrium systems to the modeling of complex 
phenomena such as plasmas and gravitational systems. 
Furthermore, its scope extends beyond the physical domains, 
finding utility in data analysis in disciplines as diverse as 
economics, finance, climatology, cosmology, and 
engineering. Concrete examples include spin systems with 
long-range interactions, laboratory plasmas, financial 
markets, and weather patterns. However, it is important to 
recognize that the Kaniadakis distribution also has its 
limitations. As an empirical distribution, its form lacks a 
rigorous theoretical foundation, requiring caution when 
applying it to specific systems. The inherent complexity of its 
use can pose significant challenges, demanding a deep 
understanding and a careful approach. 

In summary, the Kaniadakis distribution represents a 
milestone in contemporary physics, opening doors to the 
exploration of complex and challenging physical systems. 
Their insights have the potential to transform our 
understanding of the physical universe, highlighting the 
continued need for innovation and exploration in our pursuit 
of knowledge. 

The aim of this paper is to introduce the Kaniadakis 
distribution, a crucial tool in contemporary statistical physics. 
We intend to highlight its deep connection through the 
variation of a deforming parameter, highlighting how it 
enriches our understanding of complex physical systems. We 
aim to achieve an accessible conceptual presentation, free 
from excessive technical formalisms and tedious 
mathematical demonstrations, thus making the content more 
accessible and understandable to a broad audience interested 
in the topic. 
 
 
II. MAXWELL-BOLTZMANN DISTRIBUTION 
 
A. Brief Context of Kinetic Theory 
 
The kinetic theory of gases aims to describe the macroscopic 
properties of a gas by means of microscopic quantities that 
are associated with the particles and molecules that constitute 
the gas. The beginnings of the atomic theory of matter date 
back to ancient Greece. After a long period of history and 
development, today the theory is known as elementary theory 
and had as pioneers: Daniel Bernoulli (1700-1782), who 
deduced the Boyle-Robert Boyle law (1627-1691): pV = 
constant, where p is pressure and V is the volume of the 
container occupied by the gas and showed that the pressure is 
proportional to the average of the square of the modulus of 
the velocities of the molecules; Rudolf Clausius (1822-1888) 
who introduced the concept of mean free path and James 
Clerk Maxwell (1831-1879) who introduced the concept of 
velocity distribution function, known as Maxwell's 
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distribution function and calculated the shear viscosity 
coefficient of an ideal gas [12]. 

The foundations of modern kinetic theory were laid by 
Maxwell, who proposed in 1867 a general transport equation 
for any macroscopic quantity defined as a function of an 
average of a microscopic quantity associated with the gas 
particles. Furthermore, the kinetic theory of gases received a 
new boost in 1872 when Ludwig Boltzmann (1844-1906) 
proposed an equation for the distribution function of particle 
velocities in the form of an integro-differential equation and 
proved, based on this equation, the second law of 
thermodynamics [12]. 

For some applications in the description of a gas of 
galaxies, electronic plasma, it is assumed that in thermal 
equilibrium states the distribution function of the constituent 
particles is described by the classical Maxwell-Boltzmann 
distribution. It is important to note that the Maxwellian 
velocity law, as well as the derivation of the famous H-
theorem by Boltzmann, were rigorously established only for 
the model of rigid spheres, neutrons, moving freely and 
interacting only during collisions. Furthermore, these 
stimulus results are for all classical Statistical Mechanics, 
including the theory of Josiah Willard Gibbs (1839-1903) of 
“Ensembles” [13]. 

Regarding the development of Thermodynamics, 
Boltzmann established a connection between the 
macroscopic (entropy) and microscopic (number of 
accessible microstates) properties of systems. The connection 
between statistical mechanics and thermodynamics is 
established through a microscopic definition for entropy, 
which is the relevant thermodynamic potential in a system 
with fixed energy. The fundamental postulate of statistical 
mechanics establishes that all microscopic states accessible 
to a closed system in equilibrium are equally probable, since 
its fundamental theoretical basis is the so-called Boltzmann 
principle [14], it is represented by the following expression: 
 

𝑆 = 𝑘!𝑙𝑜𝑔𝛺 ,                           (1) 

 
where S is the entropy of the system, Ω is the probability 
obtained with the combinatorial arguments linked to the 
number of accessible microstates that are compatible with the 
macrostate and kB is a universal constant, called by Max 
Planck, the Boltzmann constant [15]. Classical kinetic theory 
considers gases to be made up of many particles (of the order 
of Avogadro's number) that, for the most part, move 
independently through the volume that contains them. The 
movement of each particle obeys the laws of mechanics (on 
the atomic scale, taking quantum effects into account). 

The Maxwell-Boltzmann distribution is a good 
approximation only for ideal gases in thermodynamic 
equilibrium. Non-ideal gases, in which interactions between 
molecules are significant, and gases at very low temperatures, 
where quantum effects become important, may present 
discrepancies in relation to this distribution. 

In this sense, despite these limitations, the Maxwell-
Boltzmann distribution is a powerful tool with a wide range 
of applications in physics, chemistry and engineering. From 
the calculation of thermodynamic properties to the modeling 

of planetary atmospheres, its use is fundamental for the 
advancement of scientific knowledge in several areas. 
Understanding its limitations is essential for an adequate and 
accurate application, but this does not diminish the 
importance of this distribution for modern science and 
technology. 

From this perspective, a statistical distribution is 
proposed in the case of a gas, in accordance with statistical 
mechanics for the distribution of molecular velocities. For an 
ideal gas, some hypotheses are imposed: 
I. Isotropic space. That is, all distributions in different 
directions are equal, all distributions have the same mean 
velocities, and all directions are equally likely. 
II. The x, y, and z components of the velocities are 
independent, that is, 
 

𝐹(𝑉) = 𝑓-𝑉" , 𝑉#, 𝑉$/ = 𝑛𝑓(𝑉")𝑓-𝑉#/𝑓(𝑉$).          (2) 

 
Where n represents the particle number density. Also, the 
term, 𝑓(𝑉")𝑑𝑉"𝑓-𝑉#/𝑑𝑉#𝑓(𝑉$)𝑑𝑉$, represents the probability 
of finding the particle with the velocity components in the 
intervals between 𝑉" and 𝑉" + 𝑑𝑉", 𝑉# and 𝑉# + 𝑑𝑉#, 𝑉$ and 
𝑉$+d𝑉$. It is worth noting that there is no distinction between 
the directions. Thus, 𝐹(𝑉) depends on 𝑉" , 𝑉# and 𝑉$. simply 
through speed 𝑉 = 3𝑉" + 𝑉# + 𝑉$ and if we take the 
logarithm, it turns out that: 
 
𝑙𝑛𝐹(𝑉) = 𝑙𝑛(𝑛) + 𝑙𝑛𝐹(𝑉") + 𝑙𝑛𝐹-𝑉#/ + 𝑙𝑛𝐹(𝑉$).       (3) 

 
Successively differentiating equation (3) with respect to 
𝑉" , 𝑉# and 𝑉$,, and then the derivative with respect to 𝑉", 
results in: 
 

%
&'(&)

*'(&)
*&

= %
&!+(&!)

*+(&!)
*&!

 .                         (4) 

 
Making the following definitions, we have that: 
 

𝐹(𝑉) ≡ %
&'(&)

*'(&)
*&

,                              (5) 

and  

𝑓(𝑉") ≡
%

&!+(&!)
*+(&!)
*&!

 .                               (6) 

 
Therefore, the resulting equation takes the form 
 

𝐹(𝑉) = 𝑓(𝑉")	,                                  (7) 
 
continuing with the differentiation with respect to 𝑉# and 𝑉$ 
implies that: 
 

6𝑑𝑓-𝑉#/ = 0 → 𝑓-𝑉#/ = 𝑐,,
𝑑𝑓(𝑉$) = 0 → 𝑓(𝑉$) = 𝑐,.

                     (8) 

 
Assuming 𝑐, = −2𝑎 in which the signal was introduced to 
satisfy the normalization condition and the factor 2 for 
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mathematical convenience follows from the equation [12, 
13]: 
 

𝜙(𝑉) = 𝜙(𝑉"),                             (9) 
 

𝜙(𝑉") = −2𝑎 → %
&!+(&!)

*+(&!)
*&!

= 2𝑎𝑉" .         (10) 
 
integrating on both sides, we arrive at the expression 
𝑙𝑛𝑓(𝑉") = 𝑐% − 2𝑎(𝑉|𝑥), where 𝑐%	is a constant of 
integration. From this expression and exponentiating on both 
sides we arrive at the result: 
 

𝑓(𝑉") = 𝑏𝑒./&!!,                            (11) 
 

where b is the integration constant. Since 𝑉" is a positive and 
bounded function, it follows that the constants a and b must 
be positive. The determination of these constants is based on 
the fact that thermodynamic equilibrium is characterized by 
two state variables: particle number density n and 
temperature T. Thus, to find the 𝑉" component of the velocity 
in the interval (-∞,+∞): 
 

∫ 𝑓𝑉"𝑑𝑉" = 101
.1 .                                 (12) 

 
Solving the integral, we have: 
 

𝑏 = E/
2
.                               (13) 

 
Consequently, the determination of the constant a applies to 
the average energy of  3

4
𝑘!𝑇  per degree of freedom. Then, it 

is possible to obtain the following result: 
 

𝑎 = 5
46"7

.                                (14) 
 
Thus, equation (13) can be rewritten: 
 

𝑏 = E 5
426"7

 .                               (15) 

 
Taking these results into equation (11), the following 
expression is obtained: 
 

𝑓(𝑉") = G 5
426"7

H
#
$ 𝑒𝑥𝑝 G.5&!

$

46"7
H,                 (16) 

 
any direction within an infinitesimal volume 𝑑3𝑉 of velocity 
space is given by: 
 
∫ ∫ 𝑓(𝑉)𝑉42

, 𝑠𝑒𝑛(𝜃)𝑑𝜃𝑑𝜑𝑑𝑉42
, = 4𝜋𝑓(𝑉)𝑉4𝑑𝑉.							(17) 

 
Where (𝑉)𝑑3𝑉 , the probability of a gas molecule having the 
Maxwell-Boltzmann distribution is given by [14]: 
 

𝑓,(𝑉) ≡ 4𝜋(𝑉)𝑉4 = 4𝜋 G 5
426"7

H
%
$ 𝑉4𝑒𝑥𝑝 G.5&

$

46"7
H.  (18) 

 
The Maxwell-Boltzmann distribution is a probability 
distribution that describes the distribution of molecular 
velocities in an ideal gas in thermodynamic equilibrium [1-
2]. It indicates the probability of finding a molecule with a 
given velocity in a given time interval. Characterized by a 
bell-shaped curve, the distribution shows that most molecules 
have velocities close to the average velocity, which is 
determined by the temperature of the gas and the mass of the 
molecules. 

Thus, from this Maxwell-Boltzmann probability function, 
equation (above), the average velocity of the particle is 
determined, such that: 

 

𝑉 = ∫ &+&(&)*&
'
&
∫ +&(&)*&
'
&

= E96"
25

.                    (19) 

 
In addition to describing the distribution of molecular 
velocities, the Maxwell-Boltzmann distribution has several 
applications in physics and chemistry. That is, it can be used 
to calculate the viscosity and diffusion of gases, as well as to 
explain the distribution of light frequencies emitted by atoms 
in a gas. However, it is important to mention its limitations. 
From another perspective, the magnitude of the velocity that 
makes the function 𝑓,(𝑉) a maximum is called the magnitude 
of the most probable velocity. That is: 
 

*+&(&)
*&

O
:	<	:=(

= 0.                        (20) 

 
After taking the derivative with respect to V and setting it 
equal to zero, we obtain: 
 

𝑉=> = E46"
5
.                                 (21) 

 
Finally, another characteristic speed is the mean square speed 
𝑉?=@, defined as the square root of the mean value of the 
speed module, following the following expression: 

 

𝑉?=@ = E𝑉
4
= E∫ &$+&(&)*&

'
&
+&(&)*&

= E36"7
5

 .        (22) 

 
From the three speeds, it can be observed that: 

 
𝑉?=@ > 𝑉 > 𝑉=> .                                (23) 

 
Figure (1) shows the Maxwell-Boltzmann distribution for a 
noble gas at different temperatures [13]. Thus, it is possible 
to observe that, as the temperature increases, the distribution 
becomes wider and consequently at a more probable speed 
value. 
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FIGURE 1: Maxwell-Boltzmann distribution for 4He at 
different temperatures. 
 
Figure (2) illustrates the Maxwell-Boltzmann distribution for 
some noble gases, considering a temperature of 300 K. It can 
be seen that the smaller the mass of the gas molecules, the 
wider the distribution becomes, i.e., causing a shift to the 
right and the value of the function to decrease. However, once 
again, it can be seen how much greater the most probable 
speed becomes. 
 
 
 
 

 
FIGURE 2: Maxwell-Boltzmann distribution for some gases 
at a temperature of 300 K. 
 
 
III. KANIADAKIS DISTRIBUTION 
 
Thermodynamics is a phenomenological theory of matter that 
systematizes the empirical laws on the thermal behavior of 
macroscopic bodies. From the perspective of statistical 
mechanics, its objective is to interpret the laws and results of 
thermodynamics through microscopic information, that is, 
considering the behavior of a huge number of particles that 
make up macroscopic bodies [16]. 

The field of study of statistical mechanics is divided into 
two fundamental parts: equilibrium and non-equilibrium (or 
out of equilibrium). The first is well developed and supported 
in the literature. Through the Gibbs formalism, it is possible 
to study in detail the macroscopic properties of a system in 
thermodynamic equilibrium knowing only its Hamiltonian. 
However, for out-of-equilibrium systems, there is no 
formulation that describes such systems, even when they are 
in a steady state. Recently, some proposals have emerged in 

an attempt to study out-of-equilibrium systems 
microscopically [17]. Stimulated by systems that exhibit 
scale invariance, i.e. multifractal systems, the Greek-
Brazilian physicist Constantino Tsallis in 1988 presented an 
article proposing a generalization for Boltzmann-Gibbs 
statistical mechanics [18]. In this sense, Kaniadakis' proposal 
also emerges as an alternative for the interpretation of 
phenomena out of thermal equilibrium. This work is based on 
the contributions proposed by Giorgio Kaniadakis. 

Giorgio, a Greek-Italian engineer and nuclear physicist, 
presented a new proposal for Maxwell-Boltzmann-Gibbs 
statistical mechanics in 2001, in which a generalization is 
expressed through the variation of a deforming parameter. 
Therefore, it arises naturally within Einstein's special 
relativity, so that one can see the deformation κ as a purely 
relativistic effect; κ parameter Kappa defined as a 
generalization parameter [7, 8, 9, 10]. The generalized 
Kaniadakis statistics obeys the Kinetical Interaction Principle 
(KIP), which describes the motion of particles and imposes a 
form for the entropy of the system. This principle also 
imposes the form of the generalized entropy associated with 
the system and allows us to obtain the statistical distribution 
of these particles (Kaniadakis, 2001b) [8]. In his 2002 article 
[10], entitled "Statistical mechanics in the context of special 
relativity", Kaniadakis briefly and consistently presented the 
foundations of algebra. The deformed κ-statistics can be used 
to explain a large class of observed phenomena that are 
described by distribution functions that present power laws. 
This flexibility makes the Kaniadakis distribution a valuable 
tool in a variety of scientific and technological fields. From 
the analysis of astrophysical data to the modeling of traffic 
systems and the study of earthquakes, the κ distribution has 
found applications in a wide range of disciplines. Its ability 
to handle rare events of large magnitude is particularly useful 
in scenarios where the normal distribution fails to capture the 
complexity of the data. 

Furthermore, the Kaniadakis distribution establishes a 
connection between several other well-known probability 
distributions, such as the Boltzmann-Gibbs distribution, the 
Tsallis distribution, and the Levy distribution, further 
expanding its scope of application and highlighting its 
relevance in statistical mechanics and materials science, 
among other areas. 

In the article by Tatsuaki Wada and Antonio Maria 
Scarfone [23], Kaniadakis distributions are thoroughly 
explored in their potential to model complex phenomena in 
statistical physics and natural sciences. By introducing 
Kaniadakis distributions, based on the hyperbolic arcsine 
function, the authors offer a valuable generalization of 
conventional statistical functions, such as the exponential and 
logarithmic functions, allowing a more accurate description 
of systems that exhibit power-law tail behavior. Furthermore, 
by focusing on arsinh-based distributions, they highlight the 
ability of these distributions to generalize linear constitutive 
relations, when deformed by κ. These generalizations, as 
demonstrated by the authors, preserve the original 
relationships in the limit as κ approaches zero, offering a 
flexible and robust approach to modeling a variety of physical 
and natural phenomena. 
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The numerical simulations presented in the paper provide 
a powerful empirical confirmation of the effectiveness of 
Kaniadakis distributions. By analyzing the momentum 
distribution in a system with kinetic energy deformed by κ, 
the authors demonstrate that the resulting distribution 
exhibits characteristics of a k-Gaussian. This numerical 
analysis not only validates the practical utility of Kaniadakis 
distributions, but also provides valuable insights into how 
these distributions can be applied to understand and model 
complex systems accurately and efficiently. In summary, 
Wada and Scarfone's study highlights the transformative 
potential of Kaniadakis distributions in statistical physics and 
the natural sciences, offering a new perspective for modeling 
systems with power-law tails and beyond. 

Another article that demonstrates the relevance of the 
distribution is written by Fabio Clementi, which provides a 
comprehensive and insightful analysis of the Kaniadakis 
distribution as a valuable tool for examining income and 
wealth data. Clementi highlights the flexibility of the 
generalized κ model, introducing its distribution and 
exploring its basic properties, including its relationship with 
other statistical distributions widely used in income analysis. 
By applying the Kaniadakis distribution to real-world data 
sets on income in Greece, the author carefully compares it 
with other commonly used distributions, such as the 
lognormal and Pareto distributions. This comparative 
analysis reveals the ability of the Kaniadakis distribution to 
fit real data more accurately in specific cases, highlighting its 
potential to provide more refined insights into income 
distribution in real-world settings. 

Furthermore, the paper explores broader applications of 
generalized κ models to income and wealth data in a variety 
of contexts. Clementi discusses how the Kaniadakis 
distribution can effectively capture different forms of 
skewness and heavy tailing, features often present in 
economic datasets. By providing solid evidence of the 
successful use of the Kaniadakis distribution in a variety of 
contexts, the author consolidates the importance of this 
flexible statistical approach and highlights its significant role 
in deeper understanding of economic inequality and wealth 
distribution. 

While the Kaniadakis distribution offers many 
advantages, it also faces significant challenges. Interpreting 
the κ parameter can be complex, and estimating the 
distribution parameters can be challenging, especially with 
small datasets. Furthermore, experimental validation of the 
Kaniadakis distribution is still ongoing in some areas, 
highlighting the continued need for research and 
development and refinement in this area. 

In summary, the Kaniadakis distribution represents a 
promising tool with great potential to advance our 
understanding and ability to model complex systems in 
several areas of science and technology. Its flexibility, 
accuracy, and generality make it a significant contribution to 
the arsenal of tools available to scientists and engineers, 
offering new perspectives and insights in a variety of fields. 
 
A. Mathematical definitions 
 

The Kaniadakis statistic was introduced by Giorgio 
Kaniadakis in 2001 in the paper Kaniadakis (2001b) [8]. This 
statistical framework incorporates a new one-parameter 
warped exponential function, κ. The behavior of this statistic 
is governed by the following characteristics [7, 8, 9, 10]: 

 
𝑒𝑥𝑝A(𝑥)𝑒𝑥𝑝A(−𝑥) = 1,                          (24) 

 
where the deformed exponential function obeys the following 
limit: 
 

𝑙𝑖𝑚
A→,

𝑒𝑥𝑝A(𝑥) →𝑒𝑥𝑝(𝑥).                         (25) 
 

Considering these conditions and the statistical evolution, the 
deformed exponential function assumes the following 
expression: 
 

𝑓(𝑥) = -√1 + 𝜅4𝑥4 + 𝜅𝑥/
#
),   if 0 < 𝜅 < 1 and  𝑓(𝑥) =

𝑒𝑥𝑝(𝑥)  if   𝜅 → 0.                                           (26) 
 

The function in relation to the change in the value of the κ 
factor can be observed in Figure (3): 
 

 
FIGURE 3: Behavior of the expression 𝑒𝑥𝑝A(𝑥) for 

different values of κ. 
 
 
A similar way to represent the Kaniadakis distribution [7-10], 
as per the following expression: 
 

𝑒𝑥𝑝A(𝑥) = 𝑒𝑥𝑝 V%
A
𝑎𝑟𝑐𝑠𝑖𝑛(𝜅𝑥)X.                     (27) 

 
 
B. Applications of Kaniadakis Distribution 
 
Despite its recent emergence, this statistical model has gained 
significant acceptance in several areas within the field of 
physics and beyond. Here, we present a selection of studies 
that have used this statistical framework to clarify their 
respective systems. 

In Luciano [20], the authors state that gravitational and 
cosmological scenarios based on the Kaniadakis entropy 
(deformed by κ) have been considered, resulting in 
generalized models that predict a richer phenomenology 
compared to their standard Maxwell-Boltzmann 
counterparts. The work in the paper includes a review of the 
implications of the entropy of κ in Holographic Dark Energy, 
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Entropic Gravity, black hole thermodynamics, Loop 
Quantum Gravity, and Big Bang Nucleosynthesis. 

In Kaniadakis et al. [9], the authors state that a growing 
number of applications in different fields of research are 
beginning to prove the relevance and effectiveness of k-
statistics in fitting empirical data. In the paper, the authors 
use k-statistics to formulate a statistical approach for 
epidemiological analysis. They validate the theoretical 
results by fitting the derived Weibull distributions with data 
from the 1417 plague pandemic in Florence, as well as data 
from the COVID-19 pandemic in China over the entire cycle. 
In Kaniadakis [7], the authors present a proof of the quantum 
H theorem using Kaniadakis entropy and present a quantum 
version of the second law of thermodynamics consistent with 
Kaniadakis statistics. 

In Clementi et al. [21], we observe an approach using κ-
statistics for the study of economics through the analysis of 
income distribution and inequality. 

In Martinez and de Abreu [22], the authors highlight the 
contribution of Kaniadakis entropy to nuclear reactor physics 
through the Doppler broadening function. 
These articles cover diverse fields, however, there is a 
proliferation of research using this statistic in all the areas 
presented, such as [7, 8, 9, 10, 22-26]. 

However, to our knowledge, no one has yet discussed the 
circumstances under which the Kaniadakis distribution 
should be preferred over the Tsallis distribution, or vice versa 
[27, 28]. 

The Kaniadakis distribution [7], is given by: 
 

𝑓A(𝑉) = 𝐴A𝑒𝑥𝑝A G
.5&$

46"7
H.                           (28) 

 
Where, 𝐴A is a parameter which dependents on κ. Therefore, 
the probability of finding a particle with velocity V, in any 
direction within the volume element 𝑑3𝑉 of the velocity 
space, is given by: 
 
∫ ∫ 𝑓A(𝑉)𝑉4

2
, 𝑠𝑒𝑛(𝜃)𝑑𝜃𝑑𝜑𝑑𝑉42

, = 4𝜋𝑓A(𝑉)𝑉4𝑑𝑉.    (29) 
 
Therefore the Kaniadakis distribution is given by: 
 

𝑓,)(𝑉) ≡ 4𝜋𝑓A(𝑉) = 4𝜋𝐴A𝑉4𝑒𝑥𝑝A G
.5&$

46"7
H ,         (30) 

 
Thus: 
 

𝑓,)(𝑉) = 4𝜋𝐴A𝑉4𝑒𝑥𝑝A G
.5&$

46"7
H .                 (31) 

 
Note that from the normalization condition, the parameter 𝐴A 
can be determined, such that: 
 

∫ 𝑓!!(𝑉)𝑑𝑉 = 4𝜋𝐴"
#$
%$ ∫ 𝑉&#$

! 𝑒𝑥𝑝" .
%'("

&)#*
/ 𝑑𝑉 = 1.       (32) 

 
Performing the following change of variable, we have: 
 

𝑢 = G5&
$

46"7
H → 𝑑𝑢 = G5&

6"7
H 𝑑𝑉.                      (33) 

 

After simple substitution, you get the following expression: 
 

2𝜋𝐴A G
46"7
5
H
%
$ ∫ (𝑢)

#
$

01
, 𝑒𝑥𝑝A(𝑢)𝑑𝑢 = 1.	              (34) 

 
Furthermore, using the Mellin transform [29] and comparing 
it with the integral (34), it is concluded that: 
 

𝐴" ≡ . |"|'
,)#*

/
$
" .1 + -

&
|𝜅|/

./ %
"|!|#

$
'0

./ %
"|!|%

$
'0
;    for  	|𝜅| < 2

3
 .        (35) 

 
Being 𝐴A	the normalization parameter of 𝑓,)(𝑉), from the 
Kaniadakis distribution function it is possible to find the 
fastest speed, G𝑉A*(H [30]. That is: 
 

34(!(()

3(
= 4𝜋𝐴"⌈2𝑉 −

'($

)#*7""8
)*"
+,#-

9
"
#:

⌉𝑒𝑥𝑝" .
%'("

&)#*
/ = 0.              (36) 

 
Solving it we find that: 
 

𝑉A*( = [ 46"7

5C%.A$
\
#
$
 .                           (37) 

 
Applying the same reasoning to the case of average speed, as 
proposed by [30], the following result follows: 
 

𝑉" = ∫ 𝑉𝑓!!(𝑉)𝑑𝑉 = 4𝜋𝐴" ∫ 𝑉-#$
!

#$
! 𝑒𝑥𝑝" .

%'("

&)#*
/ 𝑑𝑉.       (38) 

 
Substituting into equation (33): 
 

𝑉A = 8𝜋𝐴A G
6"7
5
H
4
∫ 𝑢01
, 𝑒𝑥𝑝A(−𝑢)𝑑𝑢.             (39) 

 
With this, the equation is replaced again in the Mellin 
transform [13], which can be represented as follows: 
 

𝑉! =
"#$D
%&'!E

%(F)
*
&
+
;	for |𝜅| < +

,
.                (40) 

 
After substituting equation (35), the following relationship is 
obtained: 
 

𝑉" = . &√&
:%<""

|𝜅|
$
"/ .1 + -

&
|𝜅|/

./ %
"|!|#

$
'0

./ %
"|!|%

$
'0
.=)#*
,'

/
%
" ; for |𝜅| < :

&
       (41) 

 
Taking these aspects into consideration, therefore, the mean 
quadratic speed is given by: 
 

𝑉"
&
= ∫ 𝑉&𝑓!!(𝑉)𝑑𝑉 = 4𝜋𝐴" ∫ 𝑉<#$

!
#$
! 𝑒𝑥𝑝" .

%'("

&)#*
/ 𝑑𝑉          (42) 

 
Since, using the equations defined in (33), (35) and the Mellin 
transform [13, 31, 32], we have that: 
 

𝑉A
4
= 2	  (m/s)2 for |𝜅| < +

-
.                      (43) 

 
Finally, for the mean square velocity, 𝑉A+*,, defined as the 
root mean square of the velocity, that is: 
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𝑉=&"./0 = > &(<|"|$(&#-|"|)
(<%|"|)"(<%&>|"|")(&%-|"|)

?
%
" ?/

%
"|!|#

$
'0

?/ %
"|!|%

$
'0
.-)#*

'
/
%
"	.                  (44) 

 
Therefore, it is also concluded that: 
 

𝑉A+*, < 𝑉A < 𝑉A*( .                           (45) 

 
It can be observed that the results obtained by equations (37), 
(41) and (44) were reduced to the results given by the 
Maxwell-Boltzmann distribution, equations (19), (21) and 
(22), when κ→0. The same occurs with the Kaniadakis 
distribution itself, which tends towards the Maxwell-
Boltzmann distribution, when κ→0. 

To evaluate the behavior of the Kaniadakis distribution, 
following equation (31) and with different temperatures and 
κ-deformations, as shown in Figure (4) for the 4He isotope. 

 

 
 
FIGURE 4: Velocity distribution of Kaniadakis 4He at 
temperature of 300 K and κ-strains. 
 
 
In Figure (4), the behavior of the probability function of 
velocities is observed for a set governed by the Kaniadakis 
statistical distribution, considering 4He nuclides and 
different temperatures. In fact, it was observed that the 
Kaniadakis distribution resumes the Maxwell-Boltzmann 
distribution when κ → 0. 
 
 
VI. CONCLUSIONS  
 
In view of the above, this study explored the main 
contributions of the Kaniadakis distribution to statistical 
mechanics and its wide applications in several fields of 
knowledge. By revisiting the historical and epistemological 
trajectory of this distribution, we highlight how the 
theoretical foundations and motivations for its formulation 
arose from the limitations observed in traditional statistical 
models. The Kaniadakis distribution, as a generalization of 
conventional statistics, brought new perspectives and tools 
for understanding complex systems that present anomalous 
behaviors. The Kaniadakis distribution is particularly useful 
in modeling complex phenomena, such as rare events of large 
magnitude, where normal distributions fail or do not present 
very satisfactory results. This distribution also connects 

several other known probability distributions, expanding its 
scope of application and relevance in statistical mechanics 
and other areas of knowledge. Although recent, the statistical 
model based on Kaniadakis entropy has been widely accepted 
and applied in several fields of physics, engineering and data 
analysis. Its flexibility and ability to provide a richer 
description of phenomena compared to conventional 
Maxwell-Boltzmann models highlight its potential. 

In summary, Kaniadakis statistics offers a powerful 
theoretical and practical tool for modeling complex systems, 
providing new insights and possibilities in various fields of 
human knowledge. The continued expansion of applications 
and the need for comparative studies highlight the relevance 
and transformative potential of this statistical approach. 
Furthermore, including the Kaniadakis distribution in the 
physics curriculum can provide students with a more 
comprehensive view of generalized statistics and its 
applications in diverse fields, from particle physics to 
economics and biology. Furthermore, by discussing the 
challenges faced and the solutions proposed by Kaniadakis, 
educators can encourage critical and creative thinking among 
students, fostering an appreciation for the dynamic and 
evolving nature of science. 
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