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Abstract 
Low frequency vertical oscillations of a spring-magnet system through an orifice bored in a non-magnetic metallic 

plate are here introduced and studied. In spite of the clean crossings of the magnet through the orifice a magnetic 

force between plate and magnet still dampens oscillations of this system. We build a theoretical model of the 

spring-magnet motion that leads us to its motion equation. This happens to be a third degree second-order 

differential that we solve for the case in which the magnet executes small amplitude oscillations. The model 

allowed us to predict the functional dependences of the magnet motion variables that we then confirmed 

experimentally in the laboratory. It is a low-cost oscillating system useful for both its physics content and its 

mathematical modelling, one that can be easily set-up and studied with parts and equipment ordinarily found in a 

physics laboratory. This work is within the reach of undergraduate students of physics and engineering students, 

and can be exploited either as an experiment in an intermediate physics laboratory or as an open-end project work. 

 
Keywords: Damped nonlinear oscillations, Magnetic induction, Magnetic damping, Physics teaching experiments. 

 

Resumen 
Presentamos y estudiamos las oscilaciones verticales de un sistema formado por un imán que cuelga de un resorte, 

y que oscila a través de un orificio horadado en una placa metálica no-magnética. El magneto pasa a través del 

orificio sin tocar sus bordes, pero aún así se genera una fuerza magnética que amortigua las oscilaciones del 

sistema. Hemos construido un modelo teórico de estas oscilaciones que nos condujo a su ecuación de movimiento. 

Ésta resulta ser una ecuación diferencial no lineal de segundo orden la cual resolvemos aquí para el caso en el cual 

el sistema oscila con pequeña amplitud. El modelo nos ha permitido predecir las dependencias funcionales del 

movimiento del imán que luego hemos confirmado experimentalmente en el laboratorio. Se trata de un sistema 

oscilante de bajo costo que ha de resultar muy útil debido a la física-matemática utilizada para modelarlo. Es sin 

duda un oscilador que puede ser fácilmente construido y estudiado con componentes y equipos de uso corriente en 

laboratorios de física. El trabajo está al alcance de estudiantes de pregrado en física o ingeniería, y puede ser 

explotado bien como experimento de un laboratorio intermedio de física, o bien como un proyecto que tenga fines 

abiertos. 

 

Palabras clave: Oscilaciones amortiguadas no lineales, inducción magnética, amortiguación magnética, 

experimentos de enseñanza de Física. 
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I. INTRODUCTION 
 

Several magneto-mechanical oscillators have been recently 

presented in the literature [1, 2, 3, 4, 5, 6]. Fig. 1 depicts an 

entirely new one: a magnet that oscillates vertically, and 

with low frequency through an orifice of radius a bored in a 

non ferromagnetic metallic plate. The case of a magnet that 

oscillates above a whole plate [6] was recently studied, and 

the present case was therefore natural to consider. It leads 

to a very different analytical treatment, and to entirely 

different results. These oscillations are damped by the weak 

magnetic interaction force between the bored plate and the 

moving magnet, i.e. by the interaction force between 

magnet and conductor as observed in other cases of magnet 

motion [4, 5, 6, 7, 8, 9], but this time the theoretical model 

of the magnet motion leads to a highly non-linear second 

order differential equation that can be solved in a number 

of ways. For the sake of a simplified mathematical and 

pedagogical treatment here we solve the system motion 

equation in Section II by assuming the oscillations of the 

magnet to be small and weakly damped by the magnetic 

force, and by equating the total energy change in the n-th 

cycle of oscillation to the energy lost by damping in the 

same cycle. This is in fact a very useful procedure 
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described by Landau and Lifshitz in the mechanics book of 

their well-known theoretical physics course [10]. For the 

present oscillating system the procedure leads to a quadratic 

algebraic equation that relates the initial amplitude An of 

oscillation in the n-th cycle to the amplitude of oscillation 

A0 at the start of the oscillations. The oscillator shown in 

Fig. 1 can be easily set-up in the laboratory using a small 

neodymium magnet, and bored aluminium plates of 

different thicknesses. In Section II we develop our 

analytical model of the magnet motion, and find its 

nonlinear motion equation. After giving the actual details of 

our spring-magnet oscillator in Section III and of our 

experimental set-up, we present our experiments and results 

in Section IV, and compare the latter with the predictions of 

our analytical model. Finally we discuss the work and 

present our conclusions in Section V. 

    
 

 
 

FIGURE 1. A magnet hangs from a spring and oscillates along 

the vertical z-axis through an orifice of radius a in a conducting 

non-magnetic plate. The equilibrium distance from magnet to 

plate is b<<a. A transparent stepped-wedge modulates a 

collimated light beam from a LED and transduces the magnet 

position into an electrical signal (after detection with a 

phototransistor). 
 

 
II. ANALITYCAL MODEL OF THE MAGNET 

MOTION 
 

The dominant forces acting on the oscillating magnet in 

Fig. 1 are of course: its own weight, the elastic force 

applied by the spring as the magnet oscillates, and finally 

the magnetic dragging force applied to the magnet by the 

weak Foucault (eddy) currents induced in the plate by the 

moving magnet itself. The friction of the whole oscillating 

system with the surrounding air was previously measured 

and found to be negligible in comparison. The magnetic 

dragging force has been calculated in many works, and in a 

number of altogether different instances [3, 4, 5, 6, 7, 8, 9, 

12]. We need to recalculate it here in the light of the present 

set-up: thus consider an infinitesimal ring of the conducting 

plate, of radius r>a and width dr, coaxial with the main 

axis of symmetry of the magnet, and with the orifice, as 

shown in Fig. 2. The equilibrium vertical position of the 

magnet is represented by b.  

Since the magnet approaches the orifice with speed v a 

motional e.m.f. i is induced in the conducting infinitesimal 

ring element. This e.m.f. can be obtained by applying 

Faraday´s Law (            ) [6, 12, 13]: 

 

              ,                             (1) 

 

where B denotes the radial component of the magnet field. 

If  denotes the thickness of the plate, and  its electrical 

conductivity, the electrical current di that appears in the 

infinitesimal ring is given by the induced e.m.f. i times the 

conductance              of the ring i.e. 

 

       
FIGURE 2. A magnet moves with vertical velocity v towards the 

orifice of radius a in a conducting plate (of thickness). A current 

di is induced in an infinitesimal ring element of radius r and width 

dr. The magnetic line B has a radial component B at the ring. The 

magnet-to-orifice separation is b. 

 

 

     
       

   
                         ,          (2) 

 

which is simply the equation of a purely resistive circuit. 

Note that we are neglecting any inductance effects in the 

infinitesimal conducting ring considered in Fig. 2, e.g. the 

term L di/dt in the circuit equation was neglected. One can 

easily calculate the inductance L of the infinitesimal ring 

which is of the order of 0.1 H, therefore any inductance 

term, or effect depending upon the ratio L/R can be safely 

neglected in the circuit (as well as any levitating force on 

the magnet [14] that may be considered). It must also be 

noted that the so-called skin depth effect can be neglected 

too since in the present case (1 Hz oscillations) this depth 

is of the order of 10 cm, while the thickness of the 

conducting plates here considered is of the order of a few 

millimetres [5, 13, 15, 16, 17]. 
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The magnetic interaction force              

between the magnet and the infinitesimal conducting ring 

can be found using a well-known relation [11, 12, 13, 18] 

 

                             
           .      (3) 

 

Integrating this infinitesimal force from r=a to infinity we 

get the force between the bored plate and the magnet, i.e. 

the magnet dragging force, 

 

             
       

 

 
  .                   (4) 

 

Let us now assume, for the sake of simplicity, the single 

dipole approximation to the small magnet. The radial 

component B of the field may then be written as (see 

Appendix A), 

 

        
  

  

     

       
 

  
 ,                         (5) 

 

where m is the magnetic dipole moment of the magnet. A 

higher-order approximation, for instance the two-dipole 

approximation, would indeed be a better one. However, it 

shall be seen that this time the single dipole approximation 

proves to be acceptable, as it predicts with good accuracy 

the results of the experiments performed by us, and 

described below. Furthermore, it does so without resorting 

to lengthy and cumbersome mathematical integrals. From 

Eqs. (4) and (5) we get 

 

         
    

  
 
 

 
     

        

 

 
   .              (6) 

 

Let us rewrite the instantaneous vertical magnet-to-hole 

separation as b+z(t) where z(t)<<a is a small elongation of 

the magnet oscillation, and b is the initial equilibrium 

position of the magnet. In our experiments b<<r, and we 

may neglect b
2
 with respect to r

2
 in the denominator of the 

integrand in Eq. (6). This integral can then be immediately 

evaluated, and by further writing          we get 

 

  
    

    
   

  
 
       

     .                        (7) 

 

This is the sought magnetic damping force on the 

oscillating magnet. It is a viscous force (note its 

dependence upon the magnet speed   ), but more 

importantly it is a nonlinear time-varying force since the 

coefficient of    is nonlinear as well as time-varying. It is 

also a weak force since we are assuming (b + z(t)) < a.  

When the system in Fig. 1 is set in small amplitude 

oscillations from a small initial separation b0, it is always 

seen to execute long lasting oscillations of slowly decaying 

amplitude, and therefore we may rewrite the damping force 

given in Eq. (7) as 

 

  
    

    
   

  
 
   

          
 

 
 
 

   ,              (8) 

 

where M is the total mass of the oscillator, and where we 

have introduced the damping constant 0 defined as 

 

   
   

  
 
 

 
     

    
 .                        (9) 

 

It is important to note that the damping force on the magnet 

motion is a function of the product      (see Eq. (8)), and 

therefore it becomes zero at the oscillation extremes, and 

zero once again when the mid-plane of the magnet crosses 

through the plane of the orifice in the plate. For the latter 

position, half of the magnet lies over the plate, and the other 

half below, the radial component B of the field then being 

exactly zero at the plate. Therefore we may expect the 

damping force on the magnet to become practically nil once 

again for this particular position of the magnet in phase 

space (z,v). 

Having found the expression for the magnetic damping 

force we can now write the magnet motion equation 

 

      
  

       
    .                      (10) 

 

In this non-linear equation the constant 0 is in fact the 

damping coefficient for a whole (non-bored) plate. It is 

interesting to compare Eq. (10) with the motion equation of 

the usual damped oscillator that contains a viscous term of 

the form      ( being a constant), and whose solution is an 

exponentially decaying function. In the present case we 

have a non-linear factor proportional to z
2 

in the viscous 

term of the equation. 

Equation (10) can be approximately solved in a number 

of ways, e.g. by resorting to numerical integration methods. 

In this work we shall find particular solutions under some 

reasonable and sound assumptions e.g. assuming the 

magnet oscillations to be of small amplitude, and taking 

into account the truly small damping constant (in practice 

     , see Section IV) of the system. With these 

assumptions in mind, we can find a solution for the motion 

equation of the oscillator in a simple way using a procedure 

introduced by Landau and Liftshitz [10], and also used in 

[3]. It consists in finding an expression that would give us 

the amplitude An of the n-th oscillation cycle in terms of the 

initial amplitude A0 of oscillation set by the experimenter. 

We therefore need to evaluate the energy lost per 

oscillation cycle of the magnet-spring system, which is 

indeed a small amount of energy due to the actual small 

damping. To the effect we simply rewrite Eq. (10) as 

 

       
       

  

     .                        (11) 

 

By integrating Eq. (11) along the n-th cycle of oscillation 

we get the following: from the left hand side of the equation 

the total energy change E per unit mass in the cycle 

where    
 

 
    

 

 
  

   
 

, while from the right we get the 

energy lost due to the damping, again per unit mass, during 

this n-th cycle, i.e. 
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      ,         (12) 

 

which is the essence of the quoted Landau and Lifshitz 

method. 

Eq. (12) is a first order differential equation that can be 

dealt with by recalling our assumptions that our magnet is 

oscillating with slowly decaying small amplitudes A(t), 

whose angular frequency is 0, that is we may try a solution 

of the form 

 

                 .                          (13) 

 

After replacing this into Eq. (12) and averaging over time 

along the n-th oscillation cycle we get 

 

        
  

          

                                  
  

  

  
 

  
              

      ,     (14) 

 

where T0 is the period of the oscillations, and A=An the 

amplitude. Therefore 

 

        
  

    
             

  

 
    

  

      
   .   (15) 

 

Since the total energy E of the oscillator may be equated 

either to its maximum kinetic energy or to its maximum 

elastic potential energy we may write the simple relation 

 

   
 

 
    

 
 

 
   

 
 

 

 
 

    ,                    (16) 

 

which also represents the total spring-magnet oscillator 

energy in the n-th oscillation cycle (practically a constant of 

the oscillations, since the damping is so small), and where 

A An= zn is the oscillation amplitude  in that cycle. Since 

both E and T0 are small we may rewrite the quotient E/T0 

as dE/dt and thence fore 

 

  
   

  
  

  

     
   .                           (17) 

 

Furthermore, replacing E from Eq. (16) we may write  

 

  
 

 


 

 
   

  
  

  

     
       

   

     
  

  

      .       (18)  

 

Integrating (18) between t=0 and t = nT0 with     (that is 

between the initial amplitude A0 and the amplitude An of the 

n-th oscillation) we finally get 

 

     
 

  
  

 

  
  

    

     .                             (19)   

 

This quadratic algebraic equation allows us to obtain the 

amplitude An in any oscillation cycle in terms of the small 

initial oscillation amplitude A0 that the experimenter sets at 

the start of the magnet oscillations.  

 

 

 

III. EXPERIMENT SET-UP 
 

As in Fig. (1) a small cylindrical Nd-ferrite magnet (height 

3.20 mm, diameter 13.2 mm) of mass 3.20 g was hung from 

a soft spring of elastic constant 3.31 N/m. Actually the total 

mass of our oscillating system is 55.4 g (non-magnetic tare 

was attached to the magnet to increase its inertia and period 

of oscillation, as well as to ensure smooth oscillations of the 

system along the vertical). The angular frequency of our 

freely oscillating magnet-spring system is 0 = 7.72 rad/s, a 

value that corresponds to a natural period of oscillation 

T0=0.814 s (accurately measured using a digital scope in 

previous calibration experiments). The small attenuation 

constant of the oscillations was measured to range from 

0.020 s
-1

 to 0.080 s
-1

 for the different cases presented 

below. The natural mechanical attenuation of the oscillating 

system was found instead to be much lower, only 0.003 s
-1

. 

A 26.0 mm diameter orifice was bored in a 3.0 mm thick 

stock aluminium (Alclad 3003-O) plate. The magnet was 

then set in motion so that it could oscillate symmetrically 

across this orifice. The electrical conductivity of the 

aluminium used was previously found ( =26.9 Ohm
-1

m
-1

) 

by measuring the resistance of several long aluminium 

strips of the material. The magnetic dipole 0.48 Am
2
 of the 

Nd magnet was also found in a previous simple experiment 

(using a coil instead of the metallic plate, letting the magnet 

to oscillate inside the coil, and then applying Faraday´s 

induction law to estimate the dipole [4, 12]). 

The vertical position of this oscillating system is 

reliably monitored using a convenient device already 

described in previous works [4, 12]. It is a home-made 

transparent stepped-wedge (about 66 steps) of thin acetate 

transparency strips carefully stacked so that each step is 

only about 0.2 mm long. This wedge is attached between 

the magnet and the spring so that a collimated beam of light 

from a white-light LED traverses it (Fig. (1)).This stepped 

wedge exponentially attenuates the beam intensity and the 

transmitted beam is measured with a photo-transistor 

followed with a diode connected in series to its emitter. The 

electrical signal generated is instantaneously displayed in a 

digital-storage oscilloscope. Previous calibrations show that 

as this stepped-wedge moves vertically it attenuates the 

light beam with small error, thus performing as a good 

linear position transducer for the magnet. The storage 

oscilloscope not only displays the actual waveform of the 

magnet oscillations, it also allows to store the waveform in 

a convenient way for analysis a posteriori (no need at all to 

use image analysis of a video). Not shown in Fig. (1) we 

attached a 1.5 cm wide acetate strip at the top of the stepped 

wedge to avoid the magnet to rotate about the vertical. This 

auxiliary and flexible damper strip, bent as an arch (upward 

concavity) was fixed between a nearby post and the wedge 

with a sticker. This stabilizing strip did not add significant 

friction to the free low frequency oscillation of the system 
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(the total measured mechanical attenuation constant of the 

system, flexible strip included is less than 0.003 s
-1

). 

 

 

 

IV. EXPERIMENTS  
 

As explained below we performed two sets of experiments 

with our system. In the first experiments we initially placed 

the magnet in coincidence with the orifice i.e. b=0. We 

expected both the damping force on the magnet and the 

radial field to be small, and then a motion equation with a 

non-linear damping term proportional to the product     . 
For the second set of experiments the magnet was initially 

placed above the orifice so that ba. Now the attenuation 

was given by the linear term        , and as b increased the 

damping coefficient approached the magnetic damping on a 

magnet that oscillates above a whole conducting plate, as in 

reference [6].  

 

 

(A. Small magnet oscillations for separation b=0 
 

When b=0 the magnet mid-plane is coincident with the 

orifice mid-plane, and the magnet can then be set to 

oscillate symmetrically with respect to the plate. Fig. 3(a) 

shows the small amplitude oscillation of the magnet 

theoretically predicted using the original motion Eq. (10), 

which we solved using the 4
th

-order Runge-Kutta method. 

The plotted envelope of the trace in Fig. 3(a) involves the 

amplitudes A(t) and was obtained instead using Eq. (19) of 

the Landau-Lifshitz approximation we developed in Section 

II. Figure 3(a) thus shows the good accuracy obtained by 

using this approximation: the envelope does match the 

decaying amplitudes (i.e. it involves the oscillations peaks). 

 

  

                                         
FIGURE 3(a). Predicted oscillations of the magnet: the 

oscillations obtained numerically solving the motion Eq. (10), for 

an initial amplitude 5.3 mm. The envelope curve of the 

oscillations was obtained instead using the quadratic Eq. (21). 

Fig. 3(b) shows actual experimental results. It shows the 

storage-oscilloscope trace of the magnet oscillations 

recorded for initial amplitude 5.3 mm. Notice the large 

number of smoothly decaying oscillations recorded in the 

experiment. The envelope of the oscillations in this figure 

was again obtained using our Eq. (19), yet this time 

including the small natural damping of the whole 

oscillating spring-magnet system (that includes even the 

friction of the whole system with air (Appendix C)), as well 

as a correction due to large amplitude oscillations. The 

agreement between theory and experiment is again very 

good. 

 

 
FIGURE 3 (b). Actual experimental oscilloscope trace of the 

same oscillations and envelope plotted in (a) for an initial 

amplitude A0= 5.3 mm (65 smoothly decaying oscillations are 

shown). This figure is to be compared with Fig. 3(a).  

 

 
Figure 3(c) shows only a few of the actual oscillations of 

the magnet in the time interval 10 to 15 s, and with greater 

detail than in Fig. 3(b). It may be noticed in the figure that 

the resolution and the linearity of our stepped-wedge-

phototransistor detector is good enough not to distort the 

harmonic nature of the oscillations.    

 

 
FIGURE 3(c) Details of the oscilloscope trace of the magnet 

oscillations taken from Fig. 3(b): showing its undistorted quasi-

sinusoidal oscillations from 10 to 15 s. This confirms the linearity 

of our position detection transducer to locate the magnet position 

as it oscillates. 
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Figure 4 corresponds to the same experimental data plotted 

in Fig. 3(b), but instead it shows (lower continuous line) the 

reciprocal of the squared decaying amplitudes 1/A
2
 as a 

function of time (tn = n T0) as given by the theory. As a 

matter of fact Eq. (19) of our analytical model predicts that 

the experimental data must lie in a straight line. The upper 

set of plotted points in the figure represents the 

experimentally measured maxima of the oscillation cycles. 

The lower set of data points, closer to the continuous line, 

was obtained by subtracting the natural mechanical 

damping of the system from the upper set of plotted data 

points. Again note that the agreement between experimental 

data and theory is good. 

 

 

 
FIGURE 4. Inverse squared amplitudes An of the oscillations vs. 

the number n of oscillation cycles (time t=nT0) as obtained from 

the oscillations in Figure 3(b). The continuous curve is given by 

Eq. (12). The upper set of points was experimentally obtained with 

an initial amplitude A0 = 5.3 mm.  

 

 

 

B. Small magnet oscillations when b0 
 

We have also studied the case of small oscillations when 

b0. In this case the integral in Eq. (6) can be evaluated 

exactly without any approximation (see Appendix B for the 

case b0). The solution is the damped oscillation 

expression z(t) = A0 exp[-(b)t]cos(0t) for the magnet 

position z as given in Appendix B. In these cases we have 

measured in the laboratory the parameter (b). In Fig. 5 we 

have plotted the attenuation constant (b) of the magnet-

spring oscillator for a set of initial equilibrium positions 

b0 of the magnet with respect to the orifice. The 

continuous curve in the figure was plotted using Eq. (B4) of 

the Appendix B. We have also plotted in the figure a 

dashed curve that bears an interesting relation with the 

present work: such dashed curve represents the damping 

coefficient (versus the ratio b/a) when the magnet oscillates 

above a plate with no orifice in it.  

 
FIGURE 5. Plot of the damping constant of the oscillator versus 

the separation distance b (equilibrium position of the magnet) in 

the regime of small amplitude oscillations. The continuous line is 

given by Eq. (B4) of Appendix B. The dashed line represents the 

damping on the magnet oscillations over a plate with no orifice. 

 

 

 

V. DISCUSSION AND CONCLUSIONS  
 

In this work we have presented a simple mechanical system 

that consists of a small magnet hung from a vertical spring 

that executes magnetically damped oscillations across an 

orifice bored in a metallic plate. The motion equation of the 

magnet, derived in Section II using basic fundamental 

principles, happens to be a non-linear differential equation 

which we approximately solved under two simplifying 

assumptions: the magnetic drag of the conducting plate on 

the magnet is weak, and the oscillations of the latter are of 

slowly decaying amplitudes. Then it was possible to apply 

an approximate method of solution, based on energy 

conservation, described in a well-known mechanics 

textbook [10]. It led us to a much simpler quadratic 

algebraic equation. Throughout the work we represented 

the magnet field using the single dipole approximation, 

which proved to be sufficient to explain satisfactorily our 

laboratory results. Once the set-up described in Section 3 

was ready (with a single piece of equipment, a digital 

storage oscilloscope), we studied two particular cases of 

oscillations: (i) when the mean vertical position 

(equilibrium position) of the magnet oscillations is zero and 

coincident with the plate mid-plane, i.e. b=0 in Fig. (1); (ii) 

when b0. In both cases our theoretical predictions about 

the motion of the magnet closely matched the experimental 

results we later obtained in the laboratory. It is interesting 

to discuss the damping on the magnet motion as a function 

of the outer radius rout of the bored finite-sized circular 

plate placed below the magnet. For a<rout<2a, i.e. outer 

radius less than about twice the radius a of the orifice, we 

clearly observed the damping on the magnet motion in its 

decaying oscillations, and such damping increased with the 

outer radius of the plate. However, for circular plates of 

outer radii rout>2a the damping remained practically 

constant. The reason for this is clear: the Foucault currents 



Spring-magnet oscillations through a bored conducting plate 

Lat. Am. J. Phys. Educ. Vol. 8, No. 1, March 2014 115 http://www.lajpe.org 

 

induced by the moving magnet in the bored plate are 

located, as expected, mostly about the rim of the orifice. By 

increasing the orifice diameter from a to 2a we lose about 

75% of the region of the metallic plate where the Foucault’s 

currents arise. This is concomitant with the 1/a
4
 dependence 

of the magnetic force obtained in in Eq. (9). Appendices B 

and C are included to show how our theoretical model and 

experiments can be extended to study the asymmetrical 

oscillation, and large amplitude oscillations of the magnet-

spring system, respectively (two suitable extensions for a 

laboratory open-end project). Work is now in progress to 

solve the non-linear motion equation or our spring-magnet 

system using numerical methods for both small and large 

oscillations, and for any value of the parameter b. Finally, 

the oscillating system presented here is a suitable 

experiment for senior undergraduate physics and 

engineering students, for an open-end project, as well as for 

demonstrations. The level of readership is therefore from 

undergraduate to graduate students, as well as for any 

university teaching physicist. 
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APPENDIX A 
 

The components of the magnetic field of a magnetic dipole 

m can be written in spherical coordinates (r,,) as in [18] 
 

   
    

  

    

  ,          
    

  

    

   .          (A1) 

 

 

In cylindrical coordinates (, , z), where =r sin  and  

z=r cos, we have 
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Analogously for the radial component in cylindrical 

coordinates we get 

 

                 ,              (A4) 
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which after setting =r it becomes Eq. (5) of the main text. 
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APPENDIX B. REGIME OF OSCILLATIONS 

WHEN b0 
 

By making the change r= bu in Eq. (6) of the main text we 

get  

 

             
    

     
 

 
  

       

 
 

 

  ,           (B1) 

 

This leads us to evaluate the following indefinite integral  

 

 
  

       
   

        

          
          ,         (B2) 

 

and to introduce the result in (B1); by further changing 

back to the variable r, the magnetic interaction force 

between plate and magnet can then be written as  

 

   
   

  
 
      

   

  

  

          

         
  .             (B3) 

 

Introducing now the constant 0 defined in Eq. (9) of the 

main text, and the new attenuation coefficient      
 

   
 

we get 

 

        
  

   
          

         
 .                           (B4) 

 

And thus we arrive to the new motion equation of the 

oscillating magnet for cases when b0, i.e. when the 

magnet is initially separated from the orifice, 

 

                
     .                        (B5) 

 

Note that when b= z(t)<<a  the second fraction in Eq. (B4) 

becomes unity, and then we recover our motion Eq. (10) of 

the main text, as expected. But, when b0 and when the 

oscillations are of small amplitude the motion equation is 

linear in z and accept the well-known solution z(t) = A0 

exp[-(b)t] cos(0t), as already considered in the second set 

of experiment (see Section IV-b).  

 

 

APPENDIX C. LARGE AMPLITUDE OSCILLA-

TION REGIME 
 

When the oscillation are of large amplitude, and about z=0 

the energy lost per cycle as given by Eq. (14) must be 

corrected by introducing a damping (b), instead of 0, in 

that equation, and also realizing that now b=z(t), therefore 

the energy lost E becomes 

 

         
  

  

    

  
      ,                      (C1) 

 

where now (z) is given by 0 f(z), with the function f(z)  

 

     
          

         
 

  
  

 

       
 ,                   (C2) 

where for convenience we have just set u=z/a. By 

expanding the denominator on the right hand side of this 

equation as a binomial we get 
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The integral in Eq. (C2) can now be re-written with b=z 

and then we get  
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      .      (C3) 

 

It should be noticed that the integral of the first term in the 

square bracket of this equation recovers the E already 

considered in the main text (Section II, Eq. (16)) as it 

should be. However, note that now two additional energy 

terms have appeared in Eq. (C3). By averaging over an 

oscillation cycle, as already done in the main text, we get 
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This equation allows us to write the new damping 

coefficient for the case of large amplitude oscillations, 

which is given (as a function of A/a) by 

 

  
 

 
       

  

 
 
 

 
 
 

 
  

 
 
 

 
 
 

  .             (C5) 

 

And now Eq. (19) of the main text must be rewritten, for 

large-amplitude oscillations, to read, 

 
 

  
  

 

  
  

  

      
  

 
 
 

 
 
 

 
  

 
 
 

 
 
 

     .    (C6) 

 

For the particular case when A/a = 5.3/13.0 the second term 

in the square bracket of this equation represents a correction 

of 0.312. 

 

 
FIGURE C1. Actual half-oscillations of large amplitude for b=0. 

Two lines have been drawn to envelope the amplitudes of 

oscillation: the dotted line was drawn using Eq. (19), while the 

solid envelope was obtained with Eq.(C6), that includes the 

correction for the amplitudes of oscillation being large. 
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Figure C1 shows actual experimental half-oscillations of 

large amplitude (oscilloscope traces) involved with 

envelopes given by Eq. (12), the dotted line, as well as with 

Eq. (C6), the solid line, respectively. It may be seen that the 

dotted envelope (obtained for small-amplitude oscillations) 

departs from the experimental results as time goes by, while 

the continuous envelope obtained using the large-amplitude 

oscillations model, just derived in this Appendix, do 

involve the peaks of the oscillations, as it should be.  

 
 

 

 


