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Abstract 
The fractional wave equation is presented as a generalization of the wave equation when arbitrary fractional order 

derivatives are involved. We have considered variable dielectric environments for the wave propagation phenomena. 

The Jumarie’s modified Riemann-Liouville derivative has been introduced and the solutions of the fractional Riccati 

differential equation have been applied to construct analytical solutions of the fractional wave equation. New family of 

exact solutions has been found for the fractional wave equation. These new solutions are compared with that obtained 

previously in the literature for the case of integer order derivatives. The results show how powerful can result the 

fractional calculus when is applied to many different physical situations. 
 

Keywords: Fractional wave equation, Variable dielectric environments for wave propagation, Analytical solution for 

the fractional wave equation. 

 

Resumen 
Se presenta la ecuación de onda de orden fraccionario como una generalización de la ecuación de onda cuando se 

tienen derivadas de orden fraccionario arbitrario. Se consideran medios dieléctricos variables para la propagación de 

ondas. Se emplea la derivada fraccionaria de Riemann-Liouville modificada por Jumarie y se aplican las soluciones de 

la ecuación diferencial fraccionaria de Riccati para obtener soluciones analíticas para la ecuación de onda fraccionaria. 

Una familia nueva de soluciones para la ecuación de onda fraccionaria se ha obtenido. Estas nuevas soluciones se 

comparan con las soluciones obtenidas previamente en la literatura para el caso de derivadas de orden entero. Los 

resultados muestran lo poderoso que resulta el cálculo fraccionario cuando se aplica a diversas situaciones físicas.  
 
Palabras clave: Ecuación de onda fraccionaria, Medios dieléctricos variables para la propagación de ondas, Soluciones 

analíticas para la ecuación de onda fraccionaria.  
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I. INTRODUCTION 
 

Fractional differential equations are generalizations of 

classical differential equations of integer order. In recent 

years, nonlinear fractional differential equations have 

gained considerable interest. It is caused by the 

development of the theory of fractional calculus itself but 

also by the applications of such constructions in various 

sciences such as physics, engineering, biology and others 

areas [1, 2, 3, 4, 5, 6, 7]. Among the investigations for 

fractional differential equations, research for seeking exact 

solutions is an important topic as well as applying them to 

practical problems [8, 9, 10, 11, 12, 13]. 

The exact solutions of the electromagnetic wave 

equation for inhomogeneous medium for physically 

relevant dielectric function have attracted much attention of 

the physicist since many years ago. Considerable effort [14] 

has been made in order to obtain exact solutions to the 

electromagnetic wave equation for inhomogeneous 

medium.  

In this paper, some basic properties of the fractional 

calculus have been successfully employed to obtain the 

analytical solution of the fractional wave-like equation 

where we have incorporated variable dielectric 

environments for wave propagation into inhomogeneous 

medium. Here we have considered a special dielectric 

function of fractional polynomial form: 

 

    
2

, .
a

z z
b z

  
 

   
 

                       (1) 

 

The method for solving the fractional wave equation is 

based on the modified Riemann-Liouville fractional 

derivative of order α [15, 16] and the analytical solutions 

for the fractional Riccati differential equation without using 

any restrictive assumption [17]. The exact solutions for the 

electric fields of the fractional wave equation are expressed 

in terms of simple polynomial functions in the fractional 

variable z, associated with the wave propagation direction. 
From historical point of view fractional calculus may 

be described as an extension of the concept of a derivative 
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operator from integer order n to arbitrary order α, where α 

is a real or complex number:  

 

   .
n

n

d d

dx dx




                                   (2) 

 

The physicists have been attracted to the fractional 

differential equations that have been applied in several 

areas, like: wave and diffusion equations, Schrödinger 

equation, Yang-Mills theory, nuclear and particle physics 

[18]. 

The recent appearance of fractional differential 

equations and their applications in physical-mathematical 

problems make necessary to investigate the methods for the 

solution for such equations (analytical and numerical) and 

we hope that this work is a step in this direction. We 

present, for the interested students and the professor 

research as well, a concise example of a fractional wave 

equation in the electromagnetic wave propagation with 

analytical solution. 

In order to give a pedagogical approach to this 

problem, in section II we first present a brief introduction 

(with out a rigorous proof) to the fractional derivatives and 

the elemental properties of the fractional derivatives. In the 

literature there are several definitions for the fractional 

derivatives, here we will only consider the Jumarie's 

modified Riemann-Liouville definition for fractional 

derivative [15, 16], because the fractional derivative 

defined in this way results to be very useful when analytical 

solutions for fractional differential equations are 

investigated. After this we present the general analytical 

solutions for the Riccati fractional differential equation 

[17]. Then in section III we introduce the electromagnetic 

wave propagation into an inhomogeneous medium where 

some analytical solutions to this problem have been 

obtained previously [14]. Next in section III.B we present 

the application of the fractional calculus to solve the 

inhomogeneous fractional order wave equation when the 

dielectric function takes the fractional position dependence 

of the equation (1). In section IV, we discuss the reliability 

of the proposed method and the exact solutions are 

compared with the results reported in the literature [14], 

when only the inhomogeneous integer order wave 

propagation has been considered. Finally in section V some 

conclusions are presented. 

 

 

II. FRACTIONAL CALCULUS (BASIC IDEAS) 
 

If we consider an application of differential or integral 

calculus simply as mapping from a given function set f onto 

another set g, e.g., 

 

      .
d

g x f x
dx

                                (3) 

 

Then in general from this relation we cannot deduce any 

valid information on a possible similarity of a function and 

its derivative. 

Therefore it is surprising and remarkable that for 

particular function classes we observe a very simple 

relationship in respect of their derivatives.  

It is easy to show that for the exponential, the 

trigonometric and the powers functions a simple rule can be 

written for all n N [18]: 
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For arbitrary order n apparently a kind of self similarity 

emerges, e.g., all derivatives of the exponential lead to 

exponentials, all derivatives of trigonometric functions lead 

to trigonometric functions. Since the derivative is given in a 

closed form it is straightforward to extend this rule from 

integer derivative coefficients n N to real and even 

imaginary coefficients α and postulate the fractional 

derivative as:  
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 (5) 

 

We restrict to k ≥ 0 and x ≥ 0 respectively to ensure the 

uniqueness of the fractional derivative definition [8-13]. 

Now we consider the formal definition for the 

Jumarie’s modified Riemann-Liouville fractional derivative 

of order α (Dα
x) [15, 16]:  
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Some properties for the proposed modified Riemann–

Liouville derivative are [15, 16]: 
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Other important result for the research of analytical 

solutions of the fractional wave equation is the exact 

solution of the fractional Riccati equation: 

 

 2   ,D

                                  (8) 

 

where  is a constant. By using the generalized exp-

function method via Mittag-Leffler function, Zhang et al. 

[19], obtained the following solutions of the fractional 

Riccati equation (8): 
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where the generalized hyperbolic and trigonometric 

functions are defined as: 
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where E(z) is the Mittag-Leffler function, given as: 
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III. FRACTIONAL WAVE EQUATION IN 

INHOMOGENEOUS MEDIUM  
 

In several cases the propagation or transmission of a 

physical quantity can be modeled by a wave equation in 

which the velocity is a function of the propagation 

coordinate: for instance, the cases of electromagnetic waves 

in normal incidence on a region whose electric permeability 

depends on the position in the medium, thin film coating of 

optical surfaces where reflection is of practical interest, 

radio wave reflection, propagation or transmission of 

electromagnetic field in the ionosphere, optical systems 

with variable index of refraction, etc. For this kind of 

system, several dielectric profiles have been solved 

analytically: the inverse squared profile, exponential, linear 

and quadratic polynomials (e.g., V. Ginzburg [14] and 

references therein). 

The propagation of waves in inhomogeneous isotropic 

media involves a very wide range of possibilities, which 

arise mainly from the specific form of the dielectric 

function . It is necessary to state the problem more 

definitely, here we consider a medium which consist of 

plane-parallel layers. The propagation of waves in a plane-

parallel layer medium may conveniently be first considered 

for the particular case of a wave incident normally on a 

layer of an inhomogeneous medium. For this case we may 

consider electric fields of the form: 

 

  ( , ) ( ) ,i tE z t E z e                            (12) 

 

where  is the angular frequency and z is the wave 

propagation direction. E(z) is the electric field 

perpendicular to the wave propagation direction (Ex(z) or 

Ey(z)), the component Ez(z) is taken to be zero. The electric 

field satisfies the wave equation: 
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(,z) is the dielectric function inside the inhomogeneous 

medium. This wave equation for arbitrary (,z) has no 

solution which can be written in terms of known functions, 

the particular cases where this can be done are of 

considerable interest [14]. For example, in the case of a 

linear form (,z)= (z)=a+bz, the solution of the equation 

(13) can be expressed in terms of known functions of order 

1/3 or Airy functions. For a parabolic form (z)=a+bz2, the 

solution can be expressed in terms of parabolic cylinder 

functions (Weber functions) [14]. The solutions for (z)= 
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(a+bz)m with integral m can be expressed in terms of Bessel 

functions; for m = -2  the solution is a power function.  

 

A. Wave propagation in a inhomogeneous medium with 

a dielectric function (z)=(a/ (b+z))2  

 

We shall now discuss one of the simplest exact solutions 

for the equation (13), namely the special case where: 
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                   (14) 

 

which is of interest because the exact solution is expressible 

in terms of elementary functions. For the wave equation: 
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it is easily verified, by direct substitution in the above 

equation,  that the solution is 
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As an example, let us consider reflection from a layer of the 

type of the equation (14): 
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with b = 0  and a = Λ in the equation  (14) ,  see  Figure 1. 

 

 
FIGURE 1. The dielectric function ε(z) given by the equation 

(17) with Λ=12.5.  

 

Let the wave be incident from medium 1, a vacuum, where 

the field has the form 
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here we consider both the incident wave traveling to the 

right and the reflected wave (R) traveling backwards to the 

left.  In medium 2 the field is  

 

 
   

2 2
/ 1/4 / 1/41/2 1/2

2

1/2 1/2 ln    ,

i c i c

i i z

E Az Az z

Az z Az e

 

 

     

 

 

 

      (19) 

 

since in the equation (16) we must put b=0, a = Λ; we have 

also used the fact that in medium 2 there is only a wave 

travelling away from the boundary. It is assumed that the 

wave can be propagated, which implies that ωΛ/c >1/2. At 

the boundary we must have E1=E2 and (dE1/dz )=(dE2/dz), 

whence: 
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B. Fractional wave propagation in inhomogeneous 

medium with a dielectric function (z)=(a/ (b+zα))2
 

 

Now if we consider the generalization of the equation (13) 

for an arbitrary fractional order we obtain: 
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in the special case where: 
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For the wave equation: 
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it is easy to show that the solution for this equation  is given 

by: 
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We can verified the above result by taking into account the 

properties of the Jumarie’s modified Riemann-Liouville 

fractional derivative (see equation (7)) 
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and noting that 
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where we have taken into account that the function  (z)=   

-Γ(1+α)/(b+zα) is one of the analytical solutions (9) of the 

fractional  Ricatti equation (8), therefore  we obtain:  
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and 
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and from equation (23) we found: 
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              (29) 

 

and the solution to the wave equation (23) is obtained by 

solving the quadratic equation: 
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the solutions of the above equation are given by  
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                     (31) 

 

and finally the solution for the fractional wave equation 

(23) is given by 
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Let us now consider the  reflection from a layer of the type 

(14): 
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    for     (medium 2),
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            (33) 

 

with b=0 (see  figure 1). Let the wave be incident from 

medium 1, a vacuum z≤Λ, where the field has the form 
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                  (34) 

 

and Eα  is the Mittag-Leffler function defined previously 

(see equation (11)). The equation (34) is the fractional order 

generalization for the incident wave of the equation (18). 

The electric field given in terms of the Mittag-Leffler 

function satisfies the following fractional wave equation: 
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In medium 2 the field is 
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         (36) 

 

since in the equation (32) we must put b=0, a = Λα; we have 

also used the fact that in medium 2 there is only a wave 

travelling away from the boundary. It is assumed that the 

wave can be propagated, which implies that                    

ωΛα /cΓ(1+α) > 1/2. At the boundary we must have E1=E2 

and (Dα
zE1)= (Dα

zE 2), whence: 
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IV. DISCUSSION 
 

Figure 2 illustrates the behavior of the analytical solution 

(34) and (36) for the electric field E(z) when α=0.92, (ω/c) 

=(5/ Λ)α and Λ=12.5, we have also shown the analytical 

solution (18) and (19) for the electric field E(z) when α=1, 

(ω/c) =5/ Λ and Λ=12.5. 

From these results we can observe that one of the 

principal effects of considering the fractional order wave 

propagation in inhomogeneous medium is the appearance 

of an entire family of solutions (36) as a function of the 

fractional order parameter α. Also from figure 2 we notice 

that the wave length of the solution increases as the 

fractional order parameter α varies from 1 and approaches 

to 0. Additionally it can be noted that the solution obtained 

in (36) reduce to the previously known solution (19) for the 

limit case α=1, that has been previously reported in the 

literature [14], in this way the solutions obtained by the 

fractional calculus techniques are more general and contain 

as a limit case the well known solution for integer order 

wave propagation phenomena. It should be noted that the 

analytical results (34) and (36) are in good agreement with 

the approximated solutions previously obtained by 

Mohyud-Din et al. [20], where they have applied the 

homotopy analysis  method to the wave-like fractional non-

linear equation. 
  

 
FIGURE 2. The analytical solution for the electric field E(z) 

when α=0.92, (ω/c) =(5/ Λ)α and Λ=12.5 (solid line) and α=1 

(dashed line). 

 

 

V. CONCLUSIONS  
 

The analytical solutions for the fractional wave equation for 

an inhomogeneous medium have been obtained by 

considering a dielectric profile with a polynomial form 

(z)=(a / (b+zα))2. We have illustrated these solutions and 

compared them with the results found for the integer wave 

equation for an inhomogeneous medium considering a 

dielectric profile with a polynomial form (z)=(a / (b+z))2. 

The effect to varying the order of the space-fractional 

derivatives on the behavior of solutions has been 

investigated. We have noticed that for the fractional order 

case an entire new family of solutions E(z) appears and the 

wave length of these solutions increases as the fractional 

order parameter α approaches to zero. We have shown 

through a simple example of wave propagation in 

inhomogeneous medium, the importance of introducing 

fractional order differential equations in physics and the 

necessity of introducing the fractional calculus techniques 

to the physics students. 
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