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Abstract 
Dynamics on a spherical surface in accelerated dilation with a pressure difference is analyzed, where some regions of 

the surface may have one of three states states regarding to its deformation, which may remain flat, may be curved or 

perforated. When the surface is considered as a fluid, those three states can be described by the Bernoulli's equation. 
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Resumen 

Se analiza la dinámica sobre una superficie esférica en dilatación acelerada con una diferencia de presión, donde 

algunas regiones de la superficie podrían tener uno de los tres estados relacionados con su deformación, siendo que 

podría mantenerse plana, curvarse o perforarse, cambiando su forma. Cuando la superficie es considerada un fluido, 

esos tres estados pueden ser descritos por la ecuación de Bernoulli. 
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I. INTRODUCTION 
 

In the study about surfaces, spherical surface is mainly 

analyzed as a bubble related with the superficial tension and 

the pressure difference [1]. We can find that some region of 

a surface may have one of three states regarding to its 

deformation, which may remain flat, may be curved or may 

be perforated. Surface can be curved or distorted, for 

instance, by supporting some high quantity of matter, 

having the following scenarios, 

a) No distorted surface, that supports nil or very low density 

of matter (only the pressure difference on the surface is 

noticed). 

b) Curved surface by supporting some considerable density 

of matter. Also, objects about the density of matter will 

follow the curvature in their motion.  

c) Curved and perforated surface by supporting a high 

density of matter and increasing of temperature, where the 

matter and the surface itself are draws (as a fluid) through 

the formed hole.  

Assuming a spherical surface in accelerated dilation like 

a fluid, we find that each state of the surface can be 

described by the terms in the Bernoulli's equation.  

In classical mechanics, total energy of a system includes 

different aspects of energy [2], defined as 

 

,T e gE PE PE KE                             (1) 

 

where ET is the total energy, P is the pressure, Ee is the 

elastic energy, Eg is the gravitational energy and KE is the 

kinetic energy. Total energy is commonly written as 

 
2 21 1

2 2
,TE kx mgh mv                        (2) 

 

where k is the elasticity constant, m is the mass, g is the 

constant of gravity for the Earth, h is the high and v is the 

velocity. 

For a fluid system, an analogous expression is given 

according to the type of energy, having 

 

,F e gE PE PE KE                         (3) 

 

where EF is the fluid energy. This relation is described by 

the Bernoulli's equation [3] that relates pressure and 

velocity, defined as 

 
2 21 1

1 1 1 2 2 22 2
,p gh v p gh v                 (4) 

 

where p is the pressure and  is the fluid density.  

In this work, dynamics on a spherical surface in 

accelerated dilation with a pressure difference is analyzed 

for each one of the three states of the surface, which may 

remain flat, may be curved or perforated. When the surface 
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is considered as a fluid, those three states can be described 

by the Bernoulli's equation. 

 

 

II. NO DISTORTED SPHERICAL SURFACE IN 

DILATION WITH A PRESURE DIFFERENCE 
 

Let us consider a homogenous spherical surface given by A 

= 4πR2 in radial accelerated dilation from a central point, 

where R is the radius of the sphere. Spherical surface in 

dilation sweeps out the space during its dilation changing 

proportional to the increasing of radius. Then, changing of 

the surface multiplied by the acceleration, for a spherical 

surface in accelerated dilation, yields 

 
24 ,adA a dR                                   (5) 

 

where a is the radial acceleration. Considering that an 

interior force F1 homogenously push out the spherical 

surface to be in accelerated dilated, we have the similar 

case of a spherical bubble with a surface tension  [1] in 

dilation by effect of the interior force. When a force F1 is 

applied from within the spherical surface exerting a 

pressure p1, the surface tension is given by 

 

1
1 (2 ) ,

2

F
F R

R
  


                             (6) 

 

where 2R is the perimeter of its circumference. If now we 

assume that an external force F2 is exerting a pressure p2 

from the external side of the spherical surface (for instance, 

due to the pressure exerted by an exterior bubble in 

contraction, as shown in Fig. 4), such force may cause a 

pressure difference p = p2 – p1 on such a surface, having  

 

2 2
2

2
.

F
F p R p

R



                         (7) 

 

Equating the forces, F1 = F2 from the expressions (6) and 

(7) results the so-called Laplàce’s law [4], where 

considering that the spherical surface is only one film, is 

defined as 

 

2 1

2
.p p p

R


                                (8) 

 

In this case, surface is not distorted and nor perforated, then 

only pressure on the surface is present. Considering the 

surface as fluid, then Bernoulli's equation (4) is reduced to 

  

1 2.p p                                        (9) 

 

Difference of pressure between the inner and outer sides of 

a bubble depends of the superficial tension, and it 

decreases with increasing radius of the spherical surface. If 

no force or a very few force acts normal to the surface, it 

must remain flat. 

For the case of a spherical surface in accelerated dilation, 

radius R accelerated increases and the pressure difference 

p existent between both, inner and outer media is 

negative, where p1 > p2. In this way, force in the sphere in 

dilatation is greater than the force exercised from the 

external media.  

 

 
 
FIGURE 1. Section of a no-distorted spherical surface in dilation. 

 

 

III. CURVED SURFACE BY THE DENSITY OF 

MATTER 
 

Eventually, surfaces have to support some quantity of 

matter, which may distort the surface in dilation if the force 

exerted by the matter overpass the surface tension in a 

given point.  

Let us now consider a spherical surface in accelerated 

dilation which can be elastically distorted by apply a force 

on it, for instance due to a considerable density of material 

that forms a body on the surface. So, considering a given 

amount of matter m on the surface that exerts a force, 

equaling expressions (7) and (8) and applying the second 

Newton law, yields 

 

2 .
2 2 2

F ma ma
R

R R


  
                      (10) 

 

Then, changing of radius by the deformation directly 

depends of the quantity of matter in the body. 

From expression (6), force is given by 

  

1 2 .F R ma                             (11) 

 

From expression (8), we can write equivalence for a 

massive body, giving 

 

2 2

2 2
,

pR pR M
p

M V V V R

 

   

 
               (12) 

 

where M is a massive body,  is the density of mater and V 

is the volume.  

Magnitude of the surface distortion is measured by the 

changing in R at the distorted region. 

If the pressure on one side of the surface differs from 

pressure on the other side, the pressure difference times 

surface area results in a normal force. In order for the 

surface tension forces to cancel the force due to pressure, 

the surface must be curved.  
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Surface curvature of a tiny patch of surface leads to a net 

component of surface tension forces acting normal to the 

center of the patch. When all the forces are balanced, the 

resulting equation is known as the Young–Laplace equation 

(8) [5]. 

 

 
 

FIGURE 2. Section of a distorted spherical surface in dilation. 

 

 

Furthermore, for a distorted spherical surface in accelerated 

dilation, matter about the distorted region will be moving 

on the geometry following the shape of surface. We can 

analyze path of the relative motion of a body m in the 

region of a distorted surface in dilation due to a high 

density of matter of other body M. Relative motion between 

the two bodies can be described by a non-inertial frame of 

reference that is traditionally derived by a coordinate 

transformation.  

Let us consider a given body with mass m in circular 

motion with constant velocity v and radius r circumgyrating 

around a central point O on the x and y-axes [6]. Position 

vector is given by 

 

,' tvr t                                     (13) 

 

where vt is the tangential velocity of the given body and t is 

the time. 

If such a body in circular motion is also uniformly 

accelerated towards the vertical direction (it is, along the z-

axis), then its position vector is given by 

 

,2

2
1

00 attvr                                (14) 

 

where v0 is the initial velocity of the given body and a is its 

acceleration along that z-axis. Having that relative velocity 

is the velocity of a body (or a frame of reference) with 

respect to other; it is related only in systems of two bodies 

(or two frames of reference). Thus, relation between both, 

position in a fixed coordinate system and positions in the 

accelerated system, for a fixed observer is given by 

 

 ,' 2

2
1

00 attvtvrrr t                     (15) 

 

where its components in a three-dimensional frame of 

reference are given by 
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Finding out time from the first expression in (16) and 

replacing it in the second expression of it, we have the 

equation of its trajectory as it is seen by a fixed observer on 

the given body, hence 
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which is a parabola. If that acceleration starts from the rest, 

then initial velocity equals zero and expression (17) is 

reduced, giving 

 

.
2 2

2

tv

ar
z                                  (18) 

 

We can generalize expression (18) for a spherical scenario 

extending vertical acceleration from along only one z-axis 

to several radial “z-axes” starting each one of them from a 

common central point [7]. Then, in a homogeneous radial 

acceleration, a sphere in accelerated dilation is formed. 

Thus, equation of the radial movement will be equivalent to 

the radius R of the formed sphere, hence 

 
2

2
.

2 t

ar
R

v
                                     (19) 

 

Reducing radius in both sides, and reordering, yields 

 
22 .tar v                                     (20) 

 

In addition, considering the surface as fluid, having from 

the Bernoulli's equation (4), yields 

 

21 1
2 2

2
.

p
p v ar ar 




                 (21) 

 

Equaling both equivalences (20) and (21) and reordering, 

yields 

 

2 22
2 .t t

p
ar v p v ar 




                 (22) 

 

Having that r = h1-h2 represents the difference of distances 

between two points, and considering acceleration like the 

gravity a = g, we can write as 

 

2 1 1 2( ).p p g h h                           (23) 

 

Then, in this case Bernoulli's equation (4) is reduced to 
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1 1 2 2.p gh p gh                            (24) 

 

 

IV. PERFORATED SURFACE BY A HIGH 

DENSITY OF MATTER 
 

A surface can be perforated in a section where the 

superficial tension is zero. For instance, increasing the 

amount of matter in a body which is on a spherical surface 

in accelerated dilation, surface will increase its distortion. 

Such a density of matter could not perforate the surface 

until reach a certain density of matter that exceeds the 

threshold of the surface tension. Also considering that 

temperature of the center of mass increases its temperature, 

eventually the surface does not support more and it 

overcomes separating the particles that compose the surface 

being perforated in the expiration point, which is when the 

surface tension is zero [8, 9], forming a hole or singularity 

with section S (Fig. 4). In this case, matter is draining 

trough the hole as a flow due to the pressure difference, and 

Bernoulli's equation (4) is reduced to 

 
2 21 1

1 1 2 22 2
,p v p v                     (25) 

 

where  is the average of density of matter of the fluid. For 

the average fluid velocity v, hence 

 

 2 2 21 1
2 1 1 22 2

,p p p v v v                (26) 

 

 
 
FIGURE 3. Section of a perforated spherical surface in dilation  

 

 

V. DRAINING FROM A BODY TO OTHER BY 

THE PRESSURE DIFFERENCE 
 

Let us consider a spherical surface with radius RB in 

contraction, where a second spherical surface in dilation 

with radius RA is on the spherical surface with radios RB, 

where RA < RB, as shown in Fig. 4. When the pressure 

difference given by expression (8) is negative, it is when p1 

> p2, and the surface is deformed by the high density of 

matter at a point of such a surface. 

Considering the surface as fluid, a hole on the surface 

behaviors like a vortex with the vertex that coincides with 

singularity, where matter in the body m1 with radius R1is 

drained as a fluid to the body m2 with radius R2.  

Furthermore, from the fluid dynamics, we have that the 

case of two spherical surfaces, one with a radius R1 under 

the internal pressure p1, and another with radius R2 under 

the external pressure p2, being connected by a pipe which 

put in contacts both spheres in communicating, the content 

of one of them pass to the other due to the difference of 

pressure between both media. Assuming that p1 > p2, it is 

for a negative pressure difference, we have that the content 

(for instance, a particle with charge q1) in the spherical 

body m1 with radius R1 is drained towards the body m2 with 

radius R2 through the communicating tube.  

The pressure difference between the spheres of radius 

R1 and R2 is given by 

 

21
2

2 1

1 1
2 ,p v

R R
 
 

    
 
 

                 (27) 

 

thus, finding out for the square of the velocity, yields 

 

2

2 1

4 1 1 2
.

p
v

R R



 

  
   

 
 

                (28) 

 

 
 
FIGURE 4. Difference of pressure between two bubbles that 

contain two bodies in contact through a tube like a singularity 

between them.  

 

 

As result of the pressure difference, the density of matter 1 

within the sphere of radius R1 flows through to the S cross-

section tube that connects both spheres, with a rate given by 

the Bernoulli’s theorem. Contents of volume V1 in the 

sphere of radius R1 is drained in a time dt to the volume V2. 

The volume V2 of the sphere of radius R2 increases while 

the volume V1 of the sphere of radius R1 decreases, at a 

speed v according to 

 
2

1 1 1 1 14 ,dV AdR R dR Svdt                  (29) 
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then, 

 

2 12

1 1

1 1
4

4 .
R R

R dR S dt






 
 
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                  (30) 

 

Integrating expression (30) and solving the integral by 

numerical procedures, yields 

 

1

01

2 2

3 1/3

4
,

4( ) 1/
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x dx r
t

V x x






 
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and volume is given by 

 
3 3

1 2 .V R R                                (32) 

 

If a closed system is considered, then the density of total 

matter in both volumes not change when it is moving from 

one sphere to the other one (incompressible flow), and the 

total volume of the system is preserved, so that the sum of 

the volumes of both bodies is constant, where R1
3 + R2

3 = K. 

Knowing the initial radius of the sphere R2 is calculated at 

time t when this sphere comes within R2≤R1<V1/3. 

Due to the perforation with section S, mass of radius R1 

behaves according to the Bernoulli’s equation (4), where a 

particle velocity must to overcome the drained velocity (as 

an escape velocity) in order to out from the body avoiding 

to be drained. Thus, from the expression (26), square of the 

escape velocity for any particle which forms part of the 

spherical body of radius R1, will be equivalent to the escape 

velocity of a mass body, hence 

 

2 1 1
1 1

2 2
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,e

e e

pR pR
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         (33) 

 

where ve is the escape velocity of the matter within the body 

with radius R1. 

 

 

VI. CONCLUSIONS 
 

A spherical surface in a pressure difference may be 

distorted, then having a specific shape and dynamics. 

Distortion can be related with the quantity of matter on the 

surface. Thus, when the quantity of matter is very few (like 

some particles) and the superficial tension supports such a 

quantity of matter, the surface remains flat. On the other 

hand, surface could be deformed by a considerable quantity 

of matter. In addition, if the quantity of matter considerably 

increases, surface could be extremely deformed and 

eventually perforated in a section wherein the matter is 

drained as a fluid. 

Furthermore, free matter about the distorted surface will 

change their trajectory following the changing of geometry 

of the surface in dilation, developing a determinate 

dynamics in the distorted system.  

Regarding to the education, dynamics for surfaces and 

fluids are revisited describing the changes in the spherical 

surface in dilation, where it is showed the possibility to 

apply some of the known equivalences to consider another 

possible results and properties from the classical theories. 
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