NOTES

D. C. Agrawal
Department of Farm Engineering, Banaras Hindu University,
Varanasi 221005, India
E-mail: dca_bhu@yahoo.com

As mentioned by Hamdan, Chamaa and Lopez-Bonilla [1] the Dirac’s wave equation still has many features which have not been fully understood. One such feature concerning the beta matrix is discussed below:

In the Dirac free particle [2] Hamiltonian $H = c\alpha \cdot p + \beta mc^2$, the first term is related purely with the motion of the particle while the second term describes the properties purely at rest. In the first term the linear momentum p is dotted with σ (because $\alpha = \rho \sigma$) which is essentially the inherent spin operator whose classical analog is rotatory angular momentum. A similar analogy should also hold for the second term i.e., the mass m which is inertia for the linear motion should be multiplied by an inherent property representing the inertia for rotatory motion. Hence it may be proposed that β essentially measures moment of inertia I_o of the particle and the suggested relation between them could be $I_o = \beta (\hbar^2 / mc^2)$. This is plausible because both β and I_o should be Hermitian operators with positive (negative) eigenvalues corresponding to particle (antiparticle). Starting with this idea the following speculations can be made. (i) Just as a conservation law holds for $L + S$ we expect the sum, $L_o + m x$ an appropriate operator, to be conserved. (ii) Since β commutes with σ hence I_o should be independent of the spinning of the particle and the expression $I_o \omega = \hbar S$ would define the classical analog of angular frequency.

REFERENCES