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Abstract 
Two standard circuits in a first course in physics are of a resistor and a capacitor or inductor connected in series to a 

battery via a switch. The conventional approach to such circuits is to begin with the differential equations describing 

them or, at minimum, to write down the exponential functions for the solutions of those equations. However, student 

understanding is improved by initially focusing on conceptual ideas and basic algebra to discuss their time-dependent 

behavior. 
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Resumen 
Dos circuitos estándar en un primer curso de física son de una resistencia y un condensador o inductor conectados en 

serie a una batería a través de un interruptor. El enfoque convencional de tales circuitos es comenzar con las ecuaciones 

diferenciales que los describen o, como mínimo, escribir las funciones exponenciales para las soluciones de esas 

ecuaciones. Sin embargo, la comprensión del estudiante mejora al enfocarse inicialmente en ideas conceptuales y 

álgebra básica para discutir su comportamiento dependiente del tiempo. 

 

Palabras clave: Circuitos RC y LR constante de tiempo, regla de bucle de voltaje de Kirchhoff. 

 

 

I. INTRODUCTION 
 

A single-loop circuit consisting of a battery of emf , a switch 

S, a resistor R, and either a capacitor C or an inductor L are 

students’ usual first introduction to time-dependent circuits 

[1] in which the current, the voltages across R and across C 

or L, and the charge on C or magnetic flux in L asymptotically 

approach their final values. Many textbooks jump into the 

mathematics, either by solving the differential equation 

obtained from a circuit analysis or by writing down its 

exponential solution without derivation. However, 

conceptual understanding is improved if class time is 

invested in explaining the ideas behind these series circuits 

using concepts and elementary algebra alone, before 

plunging into the details of exponentials and calculus. 

 

 

II. SIMPLIFIED CIRCUIT ANALYSES 
 

A. Series RC 

 

Following the sequence of a standard first course in physics, 

consider the RC circuit illustrated in Fig. 1. The capacitor is 

initially uncharged (so that 0 0q  ) and a timer is started 

from zero at the instant the switch S is closed. After that 

instant, current I begins to flow, successively carrying small 

amounts of charge off the negative plate and onto the positive 

plate of the capacitor. It therefore requires some time  before 

the magnitude of the charge q on either plate reaches a 

significant fraction of its final charge q∞. As this last 

subscript suggests, it theoretically takes an infinite amount of 

time for the capacitor to fully charge up. The reason it takes 

a long time is that, as the charge on the right-hand plate of the 

capacitor in Fig. 1 approaches q∞, this large positive charge 

repels any further increment of positive charge that the 

current tries to add to it. Another way of saying the same thing 

is to note that as the capacitor charges up, the voltage 

/CV q C  across it increases; the situation then becomes 

like that of connecting one battery of voltage  to a second 

battery of voltage VC with their positive terminals wired 

together so that they are competing to drive current in 

opposite directions. The larger of the two voltages will force 

the current to flow away from its positive terminal; but if the 

two voltages become equal to each other, then the current I 

will be zero. In other words, the current has its largest value 

I0 immediately after 0t   but it monotonically decreases and 

asymptotically approaches zero (i.e., 0I  ) when t   

as the capacitor charge monotonically increases from 0 0q   

toward its full charge q∞. 
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FIGURE 1. A series RC circuit connected to a battery  through a 

switch S. The direction of I (after S is closed) has been chosen to be 
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consistent with the polarities of the terminals of the battery and 

capacitor. 

 

To find expressions for I0 and q∞ in terms of the circuit 

parameters in Fig. 1, observe that the potential rise  across 

the battery is always equal to the sum of the potential drops 

VR and VC respectively across the resistor and capacitor (after 

the switch has been closed) according to Kirchhoff’s voltage 

loop rule. Initially 0 0q   and thus 0 0 / 0CV q C  . 

Consequently 0RV   so that 0 0 / /RI V R R  . After a 

long time, 0I   and hence 0RV I R   . That implies 

CV    and therefore Cq CV C   . 

It remains to determine the time  that characterizes how 

long it takes for the charge and current to approach these final 

values. In principle it takes an infinite amount of time for 

them to fully reach their final values [2] and so that is not a 

useful measure of  (which is called the time constant of the 

circuit). By instead asking for the time it takes the charge to 

reach any definite fraction f (say 0.9) of q∞ (or equivalently 

for the current to fall by 0.9 to 0.1 of I0) then the answer will 

be finite. The exact number adopted for f can be freely 

chosen, as long as one uses it consistently. 

The current is equal to the rate of change of charge on the 

capacitor plates. That is, / /I q t t q I      . This 

equation is only exact for an interval of time over which the 

current is constant. In the case of a charging RC circuit, the 

current is never constant but instead monotonically decreases 

to zero. However, if the current did remain constant at its 

initial value I0 then the capacitor would fully charge up in a 

time equal to 0 0( ) /q q I RC    which therefore 

characterizes the charging process and can be defined to be . 
The time constant is proportional to C because a larger 

capacitance means a larger final charge q∞ (for a given 

battery voltage ) which will require more time to 

accumulate, but the rate of flow of charge is limited by the 

resistance and thus a larger R will mean it takes longer to 

achieve the final charge so that  must also be proportional to 

R. 

It is a useful student exercise to verify that the units 

properly work out as F s  . Dimensional reasoning 

thereby implies that no matter what value of f one adopts 

(between 0 and 1) it will be the case that RC  . To show 

specifically that 1 1/ 0.63f e    when RC  , the 

exponential function must be introduced [3] but that can be 

deferred until a full mathematical analysis is presented. 

 

B. Series LR 
 

Next consider the LR circuit obtained by replacing the 

capacitor C in Fig. 1 with an inductor L. The inductor 

prevents any sudden changes in the current and so 

immediately after closing the switch S the current remains 

zero, 0 0I  . Consequently 0 0 0RV I R   across the 

resistor, which implies 0LV   from the loop rule, but the 

flux in the inductor will initially remain 0 0 0LI   . After 

a long time, the current will level off and stop changing, so 

that 0LV    because there is no induced emf across an 

inductor when the flux in it is constant. In that case RV    

and thus / /RI V R R    and /LI L R    . 

However, the voltage across the inductor is 

/ /L LV L I t t L I V      . This equation is only valid 

over a time interval during which VL is constant, which is 

never true for an LR circuit. But by following the same kind 

of reasoning as for the RC circuit, if the inductor voltage 

remained constant at its initial value VL0 then the flux would 

reach its final value in a time of 0 0( ) / /LL I I V L R    

which can be defined to be the time constant . Here the 

inductive time constant is inversely proportional to R (in 

striking contrast to the capacitive time constant which is 

directly proportional to R) because a larger resistance implies 

a smaller final current I∞ (for a given battery voltage) which 

will thus take less time to achieve, but the rate of change of 

current is limited by the inductance and thus a larger L will 

require a longer time to attain the final current so that .L   

Again, students should check that the units are such that 

H / s  . 

FIGURE 2. Curve (in blue) describing the rise and asymptotic 

leveling off of a quantity such as the capacitor charge q in an RC 

circuit after the switch S in Fig. 1 is closed at 0t  . Given that it 

becomes progressively harder to add more charge to a capacitor, the 

slope of this curve monotonically decreases to zero. A tangent line 

(in red) through the initial point (at the origin) intersects the final 

asymptote (in green) at a time of . If the vertical axis plots q, this 

statement is equivalent to the equation 0 /I q  . 

FIGURE 3. Curve describing the decrease and asymptotic leveling 

off to zero of a quantity such as the current I in an RC circuit after 

the switch S in Fig. 1 is closed at 0t  . Given that I is the time rate 

of change of q, this curve plots the point-by-point slope of the blue 

curve in Fig. 2. 
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III. CONCLUSIONS 
 

In closing, students can conceptually be led to understand 

why q (or equivalently VC) for a charging RC circuit must 

have a graph that looks like Fig. 2, whereas I (or equivalently 

VR) must have a curve in the shape of Fig. 3. Likewise the 

rising flux and current (or equivalently the resistor voltage) 

of an LR circuit follows the plot in Fig. 2, but the rate of 

change of current (which is proportional to the inductor 

voltage) resembles Fig. 3. Students will now be primed to 

accept the subsequent mathematical facts that Fig. 3 is a 

decaying exponential of the form exp( / )t   which equals 1 

at 0t   and whose argument is correctly dimensionless, 

whereas Fig. 2 must be the same curve flipped over (so that 

the two voltages add up to the constant battery emf) and is 

therefore unity minus that function which is a saturating 

exponential 1 exp( / )t   . 
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